• Title/Summary/Keyword: LASSO regression

Search Result 104, Processing Time 0.026 seconds

Graphical method for evaluating the impact of influential observations in high-dimensional data (고차원 자료에서 영향점의 영향을 평가하기 위한 그래픽 방법)

  • Ahn, Sojin;Lee, Jae Eun;Jang, Dae-Heung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1291-1300
    • /
    • 2017
  • In the high-dimensional data, the number of variables is very larger than the number of observations. In this case, the impact of influential observations on regression coefficient estimates can be very large. Jang and Anderson-Cook (2017) suggested the LASSO influence plot. In this paper, we propose the LASSO influence plot, LASSO variable selection ranking plot, and three-dimensional LASSO influence plot as graphical methods for evaluating the impact of influential observations in high-dimensional data. With real two high-dimensional data examples, we apply these graphical methods as the regression diagnostics tools for finding influential observations. It has been found that we can obtain influential observations with by these graphical methods.

A small review and further studies on the LASSO

  • Kwon, Sunghoon;Han, Sangmi;Lee, Sangin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.5
    • /
    • pp.1077-1088
    • /
    • 2013
  • High-dimensional data analysis arises from almost all scientific areas, evolving with development of computing skills, and has encouraged penalized estimations that play important roles in statistical learning. For the past years, various penalized estimations have been developed, and the least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996) has shown outstanding ability, earning the first place on the development of penalized estimation. In this paper, we first introduce a number of recent advances in high-dimensional data analysis using the LASSO. The topics include various statistical problems such as variable selection and grouped or structured variable selection under sparse high-dimensional linear regression models. Several unsupervised learning methods including inverse covariance matrix estimation are presented. In addition, we address further studies on new applications which may establish a guideline on how to use the LASSO for statistical challenges of high-dimensional data analysis.

Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification (자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정)

  • Young-Nam Kim
    • 대한상한금궤의학회지
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

Bayesian analysis of latent factor regression model (내재된 인자회귀모형의 베이지안 분석법)

  • Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.4
    • /
    • pp.365-377
    • /
    • 2020
  • We discuss latent factor regression when constructing a common structure inherent among explanatory variables to solve multicollinearity and use them as regressors to construct a linear model of a response variable. Bayesian estimation with LASSO prior of a large penalty parameter to construct a significant factor loading matrix of intrinsic interests among infinite latent structures. The estimated factor loading matrix with estimated other parameters can be inversely transformed into linear parameters of each explanatory variable and used as prediction models for new observations. We apply the proposed method to Product Service Management data of HBAT and observe that the proposed method constructs the same factors of general common factor analysis for the fixed number of factors. The calculated MSE of predicted values of Bayesian latent factor regression model is also smaller than the common factor regression model.

A Study on Domestic Drama Rating Prediction (국내 드라마 시청률 예측 및 영향요인 분석)

  • Kang, Suyeon;Jeon, Heejeong;Kim, Jihye;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.933-949
    • /
    • 2015
  • Audience rating competition in the domestic drama market has increased recently due to the introduction of commercial broadcasting and diversification of channels. There is now a need for thorough studies and analysis on audience rating. Especially, a drama rating is an important measure to estimate advertisement costs for producers and advertisers. In this paper, we study the drama rating prediction models using various data mining techniques such as linear regression, LASSO regression, random forest, and gradient boosting. The analysis results show that initial drama ratings are affected by structural elements such as broadcasting station and broadcasting time. Average drama ratings are also influenced by earlier public opinion such as the number of internet searches about the drama.

Comparison of Linear and Nonlinear Regressions and Elements Analysis for Wind Speed Prediction (풍속 예측을 위한 선형회귀분석과 비선형회귀분석 기법의 비교 및 인자분석)

  • Kim, Dongyeon;Seo, Kisung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.477-482
    • /
    • 2015
  • Linear regressions and evolutionary nonlinear regression based compensation techniques for the short-range prediction of wind speed are investigated. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS for wind speed prediction. The proposed method is compared to various linear regression methods for prediction of wind speed. Also, statistical analysis of distribution for UM elements for each method is executed. experiments are performed for KLAPS(Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea.

Detection of multiple change points using penalized least square methods: a comparative study between ℓ0 and ℓ1 penalty (벌점-최소제곱법을 이용한 다중 변화점 탐색)

  • Son, Won;Lim, Johan;Yu, Donghyeon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1147-1154
    • /
    • 2016
  • In this paper, we numerically compare two penalized least square methods, the ${\ell}_0$-penalized method and the fused lasso regression (FLR, ${\ell}_1$ penalization), in finding multiple change points of a signal. We find that the ${\ell}_0$-penalized method performs better than the FLR, which produces many false detections in some cases as the theory tells. In addition, the computation of ${\ell}_0$-penalized method relies on dynamic programming and is as efficient as the FLR.

Analysis of the relationship between regional economic growth and obesity by using Lasso Regression (Lasso Regression을 이용한 지역 경제 성장과 비만율의 상관관계 분석)

  • Kil, Eungyu;OH, Sujin;Kim, Ung-Mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.565-568
    • /
    • 2018
  • 본 연구에서는 Lasso Regression을 기반으로 하여 지역 경제 성장과 비만율을 예측한다. 연구는 3단계로 나누어 진행된다. 우선 지역성장을 대변할 수 있는 가상의 GDP 수치를 구한다. 그 다음 가상의 GDP 수치와 비만율 데이터를 이용하여 학습모델을 만든다. 마지막으로 이전의 데이터를 이용하여 앞으로의 성장을 예측하고 학습모델에 적용하여 비만율을 예측한다. 본 연구의 데이터는 학습데이터와 실험데이터를 구성된다. 학습데이터로는 국내의 8도 중 하나인 강원도의 데이터를 이용하며 실험데이터로는 강릉과 원주의 데이터를 이용한다. 평가 비교 대상으로는 과거의 흐름을 반영하는 최소자승법 예측기법을 선정하여 비교한다. 연구 결과 강릉의 경우 비교 데이터와의 오차율 평균은 1.22%로 큰 차이가 없음을 알 수 있다. 따라서 본 연구에서 제안하는 방법이 과거의 흐름을 기반으로 작성됨을 알 수 있다. 하지만 단순히 과거의 흐름만을 통해 예측하는 것은 여러 요소가 복합적으로 작용하는 비만율 예측에 알맞지 않기 때문에 본 연구 방법이 유의미하다고 여겨진다.

Survival Prognostic Factors of Male Breast Cancer in Southern Iran: a LASSO-Cox Regression Approach

  • Shahraki, Hadi Raeisi;Salehi, Alireza;Zare, Najaf
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6773-6777
    • /
    • 2015
  • We used to LASSO-Cox method for determining prognostic factors of male breast cancer survival and showed the superiority of this method compared to Cox proportional hazard model in low sample size setting. In order to identify and estimate exactly the relative hazard of the most important factors effective for the survival duration of male breast cancer, the LASSO-Cox method has been used. Our data includes the information of male breast cancer patients in Fars province, south of Iran, from 1989 to 2008. Cox proportional hazard and LASSO-Cox models were fitted for 20 classified variables. To reduce the impact of missing data, the multiple imputation method was used 20 times through the Markov chain Mont Carlo method and the results were combined with Rubin's rules. In 50 patients, the age at diagnosis was 59.6 (SD=12.8) years with a minimum of 34 and maximum of 84 years and the mean of survival time was 62 months. Three, 5 and 10 year survival were 92%, 77% and 26%, respectively. Using the LASSO-Cox method led to eliminating 8 low effect variables and also decreased the standard error by 2.5 to 7 times. The relative efficiency of LASSO-Cox method compared with the Cox proportional hazard method was calculated as 22.39. The19 years follow of male breast cancer patients show that the age, having a history of alcohol use, nipple discharge, laterality, histological grade and duration of symptoms were the most important variables that have played an effective role in the patient's survival. In such situations, estimating the coefficients by LASSO-Cox method will be more efficient than the Cox's proportional hazard method.