• Title/Summary/Keyword: LARS

Search Result 100, Processing Time 0.025 seconds

Generation of Basin Scale Climate Change Scenario Using Statistical Down Scaling Techniques (통계적 축소기법을 이용한 유역단위 기후변화 시나리오 생성)

  • Lee, Yong-Won;Kyoung, Min-Soo;Kim, Hung-Soo;Kim, Byung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1250-1253
    • /
    • 2009
  • 기후변화가 수자원에 미치는 영향을 평가하는데 있어서 주로 기후모형인 Global Climate Model (GCM)이 사용되고 있다. 그러나 이러한 기후모형의 공간적 해상도는 $3^{\circ}{\sim}4^{\circ}$ 정도로 한반도의 경우 바다로 묘사되기도 한다. 따라서 GCM을 이용해서 기후변화가 유역단위 수자원에 미치는 영향을 평가하기 위해서는 일반적으로 축소기법이 사용되고 있다. 현재까지 다양한 축소기법이 개발되었으며, 대표적인 모형으로는 SDSM(Statistical Down-Scaling Model)과 LARS-WG(The Long Ashton Research Station Weather Generator)이 있다. 이에 본 연구에서는 SDSM, LARS-WG와 함께 최근에 축소기법으로 사용되고 있는 인공신경망 기법을 이용해서 CCCMA(Canadian Centre for Climate Modeling and Analysis)에서 일 단위로 모의한 CGCM3 A2 시나리오를 기반으로 우포늪의 강우 및 온도시나리오를 구축하였다. 대상 지점인 우포늪은 경상남도 창녕군 우포늪(위도 $35^{\circ}$33', 경도 $128^{\circ}$25')에 위치하고 있으며, 모의 기간은 CASE1의 경우 현재, CASE2는 2050$^{\sim}$ 2080년, CASE3는 2080년$^{\sim}$2100년으로 각각 구분하여 축소기법을 적용하였다. 축소결과 축소기법에 따라 일정정도 차이를 보이기는 하였으나 강우와 온도 모두 증가하게 됨을 확인하였다.

  • PDF

A Study on the Application of Line Array Roll Set Process for the Manufacture of Real Ship Hull Plates (실선체 곡면 제작을 위한 선형 배열 롤 셋 공정의 적용에 관한 연구)

  • Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.120-126
    • /
    • 2010
  • The line array roll set(LARS) process, as one of many kinds of incremental forming processes, is a continuous process in which a flat metal plate is formed into a singly or doubly curved plate through successive passes of forming rolls. It was found that the curvature level of the formed plates in the previous study was well over the curvature required in shipyards. This fact shows that the LARS method has good potential for shipbuilding applications. The major purpose of the present study is to estimate experimentally the general applicability of the line array roll set process for the manufacture of ship hull plates. In this study, the target shapes are selected through investigation of the shape classification of ship hull plates that comprise a certain vessel. Forming processes for twisted shapes are analyzed with the finite element method(FEM) and the results of experimental work are presented. On the basis of the experimental and numerical results, the LARS process is applied to the production of real outer hull plates of a small patrol ship.

Design of intermediate shape in line array roll set (LARS) process (선형 배열 롤 셋 공정에서의 중간 형상 설계)

  • Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.215-219
    • /
    • 2009
  • For the effective manufacture of doubly curved metal plates, a line array roll set (LARS) process is proposed. The suggested process utilizes a pair of upper and lower symmetric roll assemblies. In the process, the initial plate is progressed into the final shape in a stepwise or pathwise manner according to the basic principle of the incremental forming process. In this work, the intermediate shape which is closest to a final shape is proposed to fabricate the desired shape effectively in design of forming schedule. The intermediate shape has homogeneous curvature in a longitudinal and transverse direction so that it can be fabricated easily without complicated controls of rolls in the roll set. The method of approximation using genetic algorithm is proposed and applied to some actual ship hulls to evaluate the efficiency of the algorithm.

  • PDF

Transient analysis of monopile foundations partially embedded in liquefied soil

  • Barari, Amin;Bayat, Mehdi;Saadati, Meysam;Ibsen, Lars Bo;Vabbersgaard, Lars Andersen
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.257-282
    • /
    • 2015
  • In this study, the authors present a coupled fluid-structures-seabed interaction analysis of a monopile type of wind turbine foundations in liquefiable soils. A two dimensional analysis is performed with a nonlinear stiffness degradation model incorporated in the finite difference program Fast Lagrangian Analysis of Continua (FLAC), which captured the fundamental mechanisms of the monopiles in saturated granular soil. The effects of inertia and the kinematic flow of soil are investigated separately, to highlight the importance of considering the combined effect of these phenomena on the seismic design of offshore monopiles. Different seismic loads, such as those experienced in the Kobe, Santa Cruz, Loma Prieta, Kocaeli, and Morgan Hill earthquakes, are analyzed. The pore water pressure development, relative displacements, soil skeleton deformation and monopile bending moment are obtained for different predominant frequencies and peak accelerations. The findings are verified with results in the liter.

Uncertainty of Simulated Paddy Rice Yield using LARS-WG Derived Climate Data in the Geumho River Basin, Korea (LARS-WG 기후자료를 이용한 금호강 유역 모의발생 벼 생산량의 불확실성)

  • Nkomozepi, Temba D.;Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.55-63
    • /
    • 2013
  • This study investigates the trends and uncertainty of the impacts of climate change on paddy rice production in the Geumho river basin. The Long Ashton Research Station stochastic Weather Generator (LARS-WG) was used to derive future climate data for the Geumho river basin from 15 General Circulation models (GCMs) for 3 Special Report on Emissions Scenarios (SRES) (A2, A1B and B1) included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. The Food and Agricultural Organization (FAO) AquaCrop, a water-driven crop model, was statistically calibrated for the 1982 to 2010 climate. The index of agreement (IoA), prediction efficiency ($R^2$), percent bias (PBIAS), root mean square error (RMSE) and a visual technique were used to evaluate the adjusted AquaCrop simulated yield values. The adjusted simulated yields showed RMSE, NSE, IoA and PBIAS of 0.40, 0.26, 0.76 and 0.59 respectively. The 5, 9 and 15 year central moving averages showed $R^2$ of 0.78, 0.90 and 0.96 respectively after adjustment. AquaCrop was run for the 2020s (2011-2030), 2050s (2046-2065) and 2090s (2080-2099). Climate change projections for Geumho river basin generally indicate a hotter and wetter future climate with maximum increase in the annual temperature of $4.5^{\circ}C$ in the 2090s A1B, as well as maximum increase in the rainfall of 45 % in the 2090s A2. The means (and ranges) of paddy rice yields are projected to increase by 21 % (17-25 %), 34 % (27-42 %) and 43 % (31-54 %) for the 2020s, 2050s and 2090s, respectively. The A1B shows the largest rice yield uncertainty in all time slices with standard deviation of 0.148, 0.189 and $0.173t{\cdot}ha^{-1}$ for the 2020s, 2050s and 2090s, respectively.

Computational performance and accuracy of compressive sensing algorithms for range-Doppler estimation (거리-도플러 추정을 위한 압축 센싱 알고리즘의 계산 성능과 정확도)

  • Lee, Hyunkyu;Lee, Keunhwa;Hong, Wooyoung;Lim, Jun-Seok;Cheong, Myoung-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.534-542
    • /
    • 2019
  • In active SONAR, several different methods are used to detect range-Doppler information of the target. Compressive sensing based method is more accurate than conventional methods and shows superior performance. There are several compressive sensing algorithms for range-Doppler estimation of active sonar. The ability of each algorithm depends on algorithm type, mutual coherence of sensing matrix, and signal to noise ratio. In this paper, we compared and analyzed computational performance and accuracy of various compressive sensing algorithms for range-Doppler estimation of active sonar. The performance of OMP (Orthogonal Matching Pursuit), CoSaMP (Compressive Sampling Matching Pursuit), BPDN (CVX) (Basis Pursuit Denoising), LARS (Least Angle Regression) algorithms is respectively estimated for varying SNR (Signal to Noise Ratio), and mutual coherence. The optimal compressive sensing algorithm is presented according to the situation.

Water Supply Reliability Revaluation For Agricultural Water Supply Pattern Changes Considering Climate Changes (기후변화에 따른 농업용수공급패턴의 변화로 인한 이수안전도변화분석)

  • Choi, Young-Don;Ahn, Jong-Seo;Shin, Hyun-Suk;Cha, Hyung-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.273-277
    • /
    • 2010
  • This research was performed to examine changes in the timing of the growth of crops along with changes in temperatures due tochanges and to analyze the change of water-supply-reliability by adding an analysis of the change of agricultural water supply patterns in the basin area of Miryang dam in Korea. Had-CM3 model from U.K. was the tool adopted for the GCM model, a stochastic, daily-meteorology-generation-model called LARS-WG was alsoused for downscaling and for the climate change scenario (A1B) which represents Korea's circumstances best. First of all, to calculate changes in the timing of the growth of crops during this period, the theory of GDD was applied. Except for the period of transplanting and irrigation, there was no choice but to find the proper accumulated temperature by comparing actual temperature data and the supply pattern of agricultural use due to limited temperature data. As a result, proper temperatures were found for each period. $400^{\circ}C$ for the preparation period of a nursery bed, $704^{\circ}C$ for a nursery bed's period, $1,295^{\circ}C$ for the rice-transplanting period, $1,744^{\circ}C$ for starting irrigation, and $3,972^{\circ}C$ for finishing irrigation. To analyze future agricultural supply patter changes, the A1B scenario of Had-CM3 model was adopted, and then Downscaling was conducted adopting LARS-WG. To conduct a stochastical analysis of LARS-WG, climate scenarios were generated for the periods 2011~2030, 2046~2065, 2080~2099 using the data of precipitation andMax/Min temperatures collected from the Miryang gauging station. Upon reviewing the result of the analysis of accumulated temperatures from 2011~2030, the supply of agricultural water was 10 days earlier, and in the next periods-2046~2065, 2080~2099 it also was 10 days earlier. With these results, it is assumed that the supply of agricultural water should be about 1 month ahead of the existing schedule to meet the proper growth conditions of crops. From the results of the agricultural water supply patterns should be altered, but the reliability of water supply becomes more favorable, which is caused from the high precipitation change. Furthermore, since the unique characteristics of precipitation in Korea, which has high precipitation in the summer, water-supply-reliability has a pattern that the precipitation in September could significantly affect the chances of drought the following winter and spring. It could be more risky to make changes to the constant supply pattern under these conditions due to the high uncertainty of future precipitation. Although, several researches have been conducted concerning climate changes, in the field of water-industry, those researches have been solely dependent on precipitation. Even so, with the high uncertainty of precipitation, it is difficult for it to be reflected in government policy. Therefore, research in the field of water-supply-patterns or evapotranspiration according to the temperature or other diverse effects, which has higher reliability on anticipation, could obtain more reliable results in the future and that could result in water-resource maintenance to be safer and a more advantageous environment.

  • PDF