Diversity of atrial local Ca²⁺ signaling Sun-Hee Woo¹, Joon-Chul Kim¹, Jee-Young Kim¹, Lars Cleemann² and Martin Morad² College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea¹, Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA² Atrial myocytes, lacking t-tubules, have two functionally separate groups of ryanodine receptors (RyRs): those at the periphery colocalized with dihydropyridine receptors (DHPRs), and those at the cell interior not associated with DHPRs. We have previously shown that the Ca²⁺ current (I_{Ca})-gated central Ca²⁺ release has a fast component that is followed by a slower and delayed rising phase. The mechanisms that regulate the central Ca²⁺ releases remain poorly understood. The fast central release component is highly resistant to dialyzed Ca²⁺ buffers, while the slower, delayed component is completely suppressed by such exogenous buffers. Here we used dialysis of immobile Ca²⁺ buffers (EGTA) into voltage-clamped rat atrial myocytes to isolate the fast component of central Ca²⁺ release and examine its properties using rapid (240 Hz) two-dimensional confocal Ca²⁺ imaging. We found two populations of rat atrial myocytes with respect to the ratio of central to peripheral Ca^{2+} release $(R_{c/p})$. In one population ("group 1", ~60% of cells), R_{c/p} converged on 0.2, while in another population ("group 2", ~40%), R_{c/p} had a Gaussian distribution with a mean value of 0.625. The fast central release component of group 2 cells appeared to result from in-focus Ca²⁺ sparks on activation of I_{Ca}. None of the group 1 cells showed t-tubule while most of group 2 cells showed rudimentary ttubule-like structures in the cell interior. The central release sites specifically did not correspond to the faint membrane staining. Peripheral sparks, immediately activated by depolarizations, are larger in the group 1 cells compared to the group 2 cells. In contrast, both fast and slow central sparks in the group 2 cells are larger than those in the group 1 cells. Quantification of total Ca²⁺ content of sarcoplasmic reticulum (SR) using brief exposure to 10 mM caffeine consistently showed larger central Ca²⁺ stores in group 2 cells. On the other hand the caffeine-releasable peripheral Ca2+ stores were larger in group 1 cells. The ratio of central to peripheral Ca²⁺ release was larger at more positive and negative voltages in the group 1 cells. In contrast, in the group 2 cells, the R_{c/p} was constant at all voltages. Nevertheless, the voltage-dependence of the fast central release component was bell-shaped and similar to that of I_{Ca} in both cell groups. Removal of extracellular Ca²⁺ or application of Ni²⁺ (5 mM) suppressed equally I_{Ca} and Ca²⁺ release from the central release sites triggered by I_{Ca} at +60 mV. Depolarization to +100 mV, where I_{Ca} is absent and $Na^+-Ca^{2^+}$ exchanger acts in reverse mode, did not trigger the fast central Ca^{2^+} releases in either group, but brief reduction of $[Na^+]_o$ to levels equivalent to $[Na^+]_i$ facilitated fast central Ca^{2^+} releases in group 2 myocytes, but not in the group 1 myocytes. In the group 2, long lasting (>1 min) exposures to caffeine (10 mM) or ryanodine (20 μ M) significantly suppressed I_{Ca} -triggered central and peripheral Ca^{2^+} releases. Our data suggest significant diversity of local Ca^{2^+} signaling in rat atrial myocytes. In one group I_{Ca} -triggered peripheral Ca^{2^+} release propagates into the interior triggering central Ca^{2^+} release with significant delay, and in another group of cells I_{Ca} triggers a significant number of central sites as rapidly and effectively as the peripheral sites, thereby producing more synchronized Ca^{2^+} releases throughout the myocytes. We suggest that the two populations of rat atrial myocytes maybe related to the differential development of rudimentary t-tubules but that the fast activation of central release sites during I_{Ca} may require larger SR Ca^{2^+} content in the cell interior, thereby generating larger central sparks in the latter group. Diversity of atrial local Ca²⁺ signaling :evidence from 2-D confocal imaging in rat atrial myocytes Sun-Hee Woo Chungnam Natl. Univ. To resolve distinct sparks we introduced high concentrations of Ca²⁺ dye and EGTA into the atrial myocytes. ## Rat atrial myocytes - Primary t-tubules, longitudinal tubules, narrower than those in ventricles Invaginated from the surface sarcolemma Ayettey & Navaratnam, 1978, J Anat 127, 125 ## Comparison of the unitary properties of Ca²⁺ sparks from surface and middle of the atrial myocytes | | Surface (+2 μ m) (n = 12) | Middle (0 μm) (n = 12) | |---|--------------------------------------|-------------------------------| | Amplitude (F ₁ /F _o) | 1.14 ± 0.32 | 1.77 ± 0.22* | | FWHA (µm) | 2.28 ± 0.46 | 1.87 ± 0.35 | | Size (µm²) | 6.71 ± 1.34 | 8.03 ± 1.71* | | Release time (msec) | 14.3 ± 1.9 | 16.6 ± 0.97 | ## Acknowledgements | Martin Morad | Georgetown Univ. School of Medicine | | |--------------------|-------------------------------------|--| | Lars Cleemann | Georgetown Univ. School of Medicine | | | Joonehul Kim | Chungnam Natl Univ | | | Jee-Young Kim | Chungnam Natl Univ | | | Alexandru N. Mihai | Georgetown Univ. Dept of Physics | | Thank you!