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Diversity of atrial local Ca®* signaling
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Atrial myocytes, lacking t-tubules, have two functionally separate groups of ryanodine
receptors (RyRs): those at the periphery colocalized with dihydropyridine receptors
(DHPRs), and those at the cell interior not associated with DHPRs. We have previously
shown that the Ca* current (Ica)-gated central Ca’*release has a fast component that is
followed by a slower and delayed rising phase. The mechanisms that regulate the central
Ca®* releases remain poorly understood. The fast central release component is highly
resistant to dialyzed Ca®* buffers, while the slower, delayed component is completely
suppressed by such exogenous buffers. Here we used dialysis of immobile Ca®* buffers
(EGTA) into voltage-clamped rat atrial myocytes to isolate the fast component of
central Ca®" release and examine its properties using rapid (240 Hz) two-dimensional
confocal Ca** imaging. We found two populations of rat atrial myocytes with respect to
the ratio of central to peripheral Ca®* release (Resp)- In one population (“group 17, ~60%
of cells), R, converged on 0.2, while in another population (“group 2”, ~40%), R, had
a Gaussian distribution with a mean value of 0.625. The fast central release component
of group 2 cells appeared to result from in-focus Ca®* sparks on activation of Ic,. None
of the group 1 cells showed t-tubule while most of group 2 cells showed rudimentary t-
tubule-like structures in the cell interior. The central release sites specifically did not
correspond to the faint membrane staining. Peripheral sparks, immediately activated by
depolarizations, are larger in the group 1 cells compared to the group 2 cells. In contrast,
both fast and slow central sparks in the group 2 cells are larger than those in the group 1
cells. Quantification of total Ca®* content of sarcoplasmic reticulum (SR) using brief
exposure to 10 mM caffeine consistently showed larger central Ca** stores in group 2
cells. On the other hand the caffeine-releasable peripheral Ca®* stores were larger in
group 1 cells. The ratio of central to peripheral Ca’* release was larger at more positive
and negative voltages in the group 1 cells. In contrast, in the group 2 cells, the R was
constant at all voltages. Nevertheless, the voltage-dependence of the fast central release
component was bell-shaped and similar to that of I, in both cell groups. Removal of
extracellular Ca®* or application of Ni%* (5 mM) suppressed equally Ic, and Ca®* release
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from the central release sites triggered by I, at +60 mV. Depolarization to +100 mV,
where I, is absent and Na'—Ca®" exchanger acts in reverse mode, did not trigger the
fast central Ca®" releases in either group, but brief reduction of [Na'], to levels
equivalent to [Na'); facilitated fast central Ca®* releases in group 2 myocytes, but not in
the group 1 myocytes. In the group 2, long lasting (>1 min) exposures to caffeine (10
mM) or ryanodine (20 uM) significantly suppressed Ic,-triggered central and peripheral
Ca’* releases. Our data suggest significant diversity of local Ca** signaling in rat atrial
myocytes. In one group Ic,-triggered peripheral Ca’" release propagates into the interior
triggeﬁng central Ca®" release with significant delay, and in another group of cells I,
triggers a significant number of central sites as rapidly and effectively as the peripheral
sites, thereby producing more synchronized Ca®* releases throughout the myocytes. We
suggest that the two populations of rat atrial myocytes maybe related to the differential
development of rudimentary t-tubules but that the fast activation of central release sites
during Ic, may require larger SR Ca®" content in the cell interior, thereby generating

larger central sparks in the latter group.
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Diversity of atrial local Ca2* signaling
tevidence from 2-D confocal imaging in rat atrial myocytes

Sun-Hee Woo
Chungnam Natl. Univ.

EMs from Carl, Felix, Caswell, Brandt, Ball, Vaghy, Meissner & Ferguson, 1995
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To resolve distinct sparks we introduced
high concentrations of Ca?* dye and EGTA

into the atrial myocytes.

2 mM [EGTA], and 1 mM [Fluo-3];
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Two types of local Ca2* signaling in Ca2* buffered atrial myocytes

Rat atrial myocytes

* Primary t-tubules, iongitudinal tubules, narrower than those in ventricles
* Invaginated from the surface sarcolemma
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In-focus sparks in the center

Focal plane, middle (O umy) B Focai plane, surface (+2 um) C
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Comparison of the unitary properties of Ca?* sparks
from surface and middie of the atrial myocytes

Surface (+2 pm) (n = 12)

Middle (0 um) (n = 12)

Amplitude (F,/F,) 1.14 £0.32 1.77 £ 0.22*
FWHA (um) 228 £0.46 1.87 £0.35
Size (um?) 6.71£1.34 8.03£1.71*
Release time (msec) 14319 16.6 £ 0.97
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Digital integral of (F/Fo)
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