• Title/Summary/Keyword: LANL2015

Search Result 6, Processing Time 0.021 seconds

Nonlinear damage detection using higher statistical moments of structural responses

  • Yu, Ling;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.221-237
    • /
    • 2015
  • An integrated method is proposed for structural nonlinear damage detection based on time series analysis and the higher statistical moments of structural responses in this study. It combines the time series analysis, the higher statistical moments of AR model residual errors and the fuzzy c-means (FCM) clustering techniques. A few comprehensive damage indexes are developed in the arithmetic and geometric mean of the higher statistical moments, and are classified by using the FCM clustering method to achieve nonlinear damage detection. A series of the measured response data, downloaded from the web site of the Los Alamos National Laboratory (LANL) USA, from a three-storey building structure considering the environmental variety as well as different nonlinear damage cases, are analyzed and used to assess the performance of the new nonlinear damage detection method. The effectiveness and robustness of the new proposed method are finally analyzed and concluded.

Thermal Characteristics of Hybrid Insert for Carbon Composite Satellite Structures

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.162-167
    • /
    • 2015
  • Composite sandwich structures are widely employed in various applications, due to their high specific stiffness and specific bending strength compared to solid panels. Lately, for that reason, the advanced composite sandwich structures are employed in satellite structures: materials should be as light as possible with the highest attainable performance. This study is majorly focused on inserts employed to the composite sandwich satellite structures. A new hybrid insert design was developed in precedent study to reduce the mass of the sandwich structure since the mass of the satellite structure is related to high launching cost [1]. In this study, the thermal characteristics and behavior of the precedently developed hybrid insert with carbon composite reinforcing web and the conventional partial insert were numerically investigated.

Techniques for Improving Host-based Anomaly Detection Performance using Attack Event Types and Occurrence Frequencies

  • Juyeon Lee;Daeseon Choi;Seung-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.89-101
    • /
    • 2023
  • In order to prevent damages caused by cyber-attacks on nations, businesses, and other entities, anomaly detection techniques for early detection of attackers have been consistently researched. Real-time reduction and false positive reduction are essential to promptly prevent external or internal intrusion attacks. In this study, we hypothesized that the type and frequency of attack events would influence the improvement of anomaly detection true positive rates and reduction of false positive rates. To validate this hypothesis, we utilized the 2015 login log dataset from the Los Alamos National Laboratory. Applying the preprocessed data to representative anomaly detection algorithms, we confirmed that using characteristics that simultaneously consider the type and frequency of attack events is highly effective in reducing false positives and execution time for anomaly detection.

Development of Multi-channel Simultaneous Laser Shock Sensing System for Linear Explosive-induced Pyroshock Propagation Prediction (선형화약 파이로 충격파 전파 예측을 위한 다채널 동시 레이저 충격파 센싱 시스템 개발)

  • Jang, Jae Kyeong;Abbas, Haider;Lee, Jung Ruyl
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.46-51
    • /
    • 2015
  • Multi-channel DAQ system was developed to predict propagation characteristic of the shock wave generated by linear explosive. The system can generate shock wave from 1000 points per second using a pulsed laser and simultaneously obtain the shock wave signals using 15 chanel contact sensor. The system is expected to pridict the propagation characteristics of various linear explosive-induced pyroshock because it can be used with a user-defined time delay that corresponds to detonation speed of the linear explosive.

Manufacturing Method for Sensor-Structure Integrated Composite Structure (센서-구조 일체형 복합재료 구조물 제작 방법)

  • Han, Dae-Hyun;Kang, Lae-Hyong;Thayer, Jordan;Farrar, Charles
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.155-161
    • /
    • 2015
  • A composite structure was fabricated with embedded impact detection capabilities for applications in Structural Health Monitoring (SHM). By embedding sensor functionality in the composite, the structure can successfully perform impact localization in real time. Smart resin, composed of $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,\;Ti)O_2$ (PNN-PZT) powder and epoxy resin with 1:30 wt%, was used instead of conventional epoxy resin in order to activate the sensor function in the composite structure. The embedded impact sensor in the composite was fabricated using Hand Lay-up and Vacuum Assisted Resin Transfer Molding(VARTM) methods to inject the smart resin into the glass-fiber fabric. The electrodes were fabricated using silver paste on both the upper and bottom sides of the specimen, then poling treatment was conducted to activate the sensor function using a high voltage amplifier at 4 kV/mm for 30 min at room temperature. The composite's piezoelectric sensitivity was measured to be 35.13 mV/N by comparing the impact force signals from an impact hammer with the corresponding output voltage from the sensor. Because impact sensor functionality was successfully embedded in the composite structure, various applications of this technique in the SHM industry are anticipated. In particular, impact localization on large-scale composite structures with complex geometries is feasible using this composite embedded impact sensor.

Runtime Prediction Based on Workload-Aware Clustering (병렬 프로그램 로그 군집화 기반 작업 실행 시간 예측모형 연구)

  • Kim, Eunhye;Park, Ju-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.56-63
    • /
    • 2015
  • Several fields of science have demanded large-scale workflow support, which requires thousands of CPU cores or more. In order to support such large-scale scientific workflows, high capacity parallel systems such as supercomputers are widely used. In order to increase the utilization of these systems, most schedulers use backfilling policy: Small jobs are moved ahead to fill in holes in the schedule when large jobs do not delay. Since an estimate of the runtime is necessary for backfilling, most parallel systems use user's estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, we propose a novel system for the runtime prediction based on workload-aware clustering with the goal of improving prediction performance. The proposed method for runtime prediction of parallel applications consists of three main phases. First, a feature selection based on factor analysis is performed to identify important input features. Then, it performs a clustering analysis of history data based on self-organizing map which is followed by hierarchical clustering for finding the clustering boundaries from the weight vectors. Finally, prediction models are constructed using support vector regression with the clustered workload data. Multiple prediction models for each clustered data pattern can reduce the error rate compared with a single model for the whole data pattern. In the experiments, we use workload logs on parallel systems (i.e., iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing with other techniques, experimental results show that the proposed method improves the accuracy up to 69.08%.