• Title/Summary/Keyword: LANDSAT

Search Result 1,074, Processing Time 0.023 seconds

Analysis of the Relationship Between Land Cover and Land Surface Temperature at Cheongju Region Using Landsat Images in Summer Day (LANDSAT영상을 이용한 여름철 청주지역의 토지피복과 지표면온도와의 관계 분석)

  • Park, Jong-Hwa;Kim, Jin-Soo;Na, Sang-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.39-48
    • /
    • 2006
  • The objective of this research was to find an indirect method to estimate land surface temperature (LST) efficiently, using Landsat images. Agricultural fields including paddy fields have long been known to have multi-functions beneficial to the environment and ecology of the urban surrounding areas. Among these functions, the ambient temperature cooling (ATC) effect is widely acknowledged. However, quantitative and regional assessment of such effect has not been performed. Thermal remote sensing has been used over urban areas to assess the ATC effect, Thermal Island Effect(TIE), and as input for models of urban surface atmosphere exchange. Here, we review the use of thermal remote sensing in the study of paddy fields and urban climates, focusing primarily on the ATC effect. Landsat satellite images were used to determine the surface temperatures of different land cover types of a $44km^{2}$ study area in Cheongiu, Korea. The results show that the ATC is a function of paddy area percentage in Landsat pixels. Landsat pixels with higher paddy area percentage have much more cooling effect. The use of satellite data may contribute to a globally consistent method for analysis of ATC effect.

Analysis on the Effect of Spectral Index Images on Improvement of Classification Accuracy of Landsat-8 OLI Image

  • Magpantay, Abraham T.;Adao, Rossana T.;Bombasi, Joferson L.;Lagman, Ace C.;Malasaga, Elisa V.;Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.561-571
    • /
    • 2019
  • In this paper, we analyze the effect of the representative spectral indices, normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and normalized difference built-up index (NDBI) on classification accuracies of Landsat-8 OLI image.After creating these spectral index images, we propose five methods to select the spectral index images as classification features together with Landsat-8 OLI bands from 1 to 7. From the experiments we observed that when the spectral index image of NDVI or NDWI is used as one of the classification features together with the Landsat-8 OLI bands from 1 to 7, we can obtain higher overall accuracy and kappa coefficient than the method using only Landsat-8 OLI 7 bands. In contrast, the classification method, which selected only NDBI as classification feature together with Landsat-8 OLI 7 bands did not show the improvement in classification accuracies.

A Correlation Analysis between Land Surface Temperature and NDVI in Kunsan City using Landsat 7 TM/ETM+ Satellite Images (Landsat 7 TM/ETM+ 위성영상을 이용한 군산지역 지표 온도와 NDVI에 대한 상관분석)

  • Lee, Hong-Ro;Kim, Hyung-Moo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.31-43
    • /
    • 2005
  • Four time points of the fractional area data during the 15 years of the highest group of land surface temperature and the lowest group of NDVl of the Kunsan city Chollabuk_do, Korea located beneath the Yellow sea coast, are observed and analyzed their correlations for the intention to detect the changes of urban land cover. As long as the effective contributions of satellite images in the continuous monitoring of the wide area for wide range of time period, Landsat-5 TM and Landsat-7 ETM+ artificial satellite images, acquisited over the Kunsan city area, are surveyed by the compared calibration after quantization and classification of the deviations between TM and ETM+ images substituted approved error correction thresholds such as gains and biases or offsets. This experiment and research applied Landsat-5 TM and Landsat-7 ETM+ artificial satellite images in change detection of urban land cover in urbanized Kunsan city, then detected strong and proportional correlation relationship between the highest group of land surface temperature and the lowest group of NDVI which exceeded R=(+)0.9478, so the proposed Correlation Analysis Model between the highest group of land surface temperature and the lowest group of NDVI will be able to give proof an effective suitability to the land city change detection monitoring.

  • PDF

Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data (고해상도 Landsat 8 위성자료기반의 지표면 온도 산출)

  • Jee, Joon-Bum;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.171-183
    • /
    • 2016
  • Land Surface Temperature (LST) retrieved from Landsat 8 measured from 2013 to 2014 and it is corrected by surface temperature observed from ground. LST maps are retrieved from Landsat 8 calculate using the linear regression function between raw Landsat 8 LST and ground surface temperature. Seasonal and annual LST maps developed an average LST from season to annual, respectively. While the higher LSTs distribute on the industrial and commercial area in urban, lower LSTs locate in surrounding rural, sea, river and high altitude mountain area over Seoul and surrounding area. In order to correct the LST, linear regression function calculate between Landsat 8 LST and ground surface temperature observed 3 Korea Meteorological Administration (KMA) synoptic stations (Seoul(ID: 108), Incheon(ID: 112) and Suwon(ID: 119)) on the Seoul and surrounding area. The slopes of regression function are 0.78 with all data and 0.88 with clear sky except 5 cloudy pixel data. And the original Landsat 8 LST have a correlation coefficient with 0.88 and Root Mean Square Error (RMSE) with $5.33^{\circ}C$. After LST correction, the LST have correlation coefficient with 0.98 and RMSE with $2.34^{\circ}C$ and the slope of regression equation improve the 0.95. Seasonal and annual LST maps represent from urban to rural area and from commercial to industrial region clearly. As a result, the Landsat 8 LST is more similar to the real state when corrected by surface temperature observed ground.

Sea Surface Temperature Analysis for the Areas near Gwang-Yang Steel Mill using LANDSAT Thermal Data (Landsat 열적외선 위성자료를 이용한 광양제철소 주변 해역 해수표면온도 분석)

  • Kim, Sang-Min;Kim, Chang-Jae;Han, Soo-Hee;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 2011
  • Characteristics of sea surface temperature(SST) difference around Gwang-Yang steel Mill where can affect marine ecosystem in Gwang-Yang bay using 25 collected Landsat-7 ETM+ thermal infrared band data from 2000 to 2010. To analyze accuracy of SST from the Landsat-7 ETM+ thermal infrared image, satellite-induced SST was verfied by compared Yeo-Su tide station and Landsat thermal image. As a result, SST from Landsat-7 ETM+ is $1.22^{\circ}C$ lower than sea temperature from Yeo-Su tide station and correlation coefficient resulted in above 0.991 which means that correlation coefficient between Landsat image temperature and field sea temperature is relatively high. Five regions were selected to analyze sea surface temperature between near Gwang-Yang steel mill and the open sea and analyzed timeseries of sea surface temperature seasonally and regionally. Moreover, the additional analysis has been carried out by comparing the averaged temperatures of Gwang-Yang and Soon-Cheon bays using the dataset over a year.

Time-series Analysis of Pyroclastic Flow Deposit and Surface Temperature at Merapi Volcano in Indonesia Using Landsat TM and ETM+ (Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석)

  • Cho, Minji;Lu, Zhong;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.443-459
    • /
    • 2013
  • Located on Java subduction zone, Merapi volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Merapi's eruptions were relatively small with VEI 1-3. However, the most recent eruption occurred in 2010 was quite violent with VEI 4 and 386 people were killed. In this study, we have attempted to study the characteristics of Merapi's eruptions during 18 years using optical Landsat images. We have collected a total of 55 Landsat images acquired from July 6, 1994 to September 1, 2012 to identify pyroclastic flows and their temporal changes from false color images. To extract areal extents of pyroclastic flows, we have performed supervised classification after atmospheric correction by using COST model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the CVP monthly reports. We have converted the thermal band of Landsat TM and ETM+ to the surface temperature using NASA empirical formula and calculated time-series of the mean surface temperature in the area of peak temperature surrounding the crater. The mean surface temperature around the crater repeatedly showed the tendency to rapidly rise before eruptions and cool down after eruptions. Although Landsat satellite images had some limitations due to weather conditions, these images were useful tool to observe the precursor changes in surface temperature before eruptions and map the pyroclastic flow deposits after eruptions at Merapi volcano.

Availability of Land Surface Temperature Using Landsat 8 OLI/TIRS Science Products (Landsat 8 OLI/TIRS Science Product를 활용한 지표면 온도 유용성 평가)

  • Park, SeongWook;Kim, MinSik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.463-473
    • /
    • 2021
  • Recently, United States Geological Survey (USGS) distributed Landsat 8 Collection 2 Level 2 Science Product (L2SP). This paper aims to derive land surface temperature from L2SP and to validate it. Validation is made by comparing the land surface temperature with the one calculated from Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) and the one from Automated Synoptic Observing System (ASOS). L2SP is calculated from Landsat 8 Collection 2 Level 1 data and it provides land surface temperature to users without processing surface reflectance data. Landsat 8 data from 2018 to 2020 is collected and ground sensor data from eight sites of ASOS are used to evaluate L2SP land surface temperature data. To compare ground sensor data with remotely sensed data, 3×3 grid area data near ASOS station is used. As a result of analysis with ASOS data, L2SP and L1TP land surface temperature shows Pearson correlation coefficient of 0.971 and 0.964, respectively. RMSE (Root Mean Square Error) of two results with ASOS data is 4.029℃, 5.247℃ respectively. This result suggests that L2SP data is more adequate to acquire land surface temperature than L1TP. If seasonal difference and geometric features such as slope are considered, the result would improve.

Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin (Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석)

  • Kim, Byeongcheol;Lee, Kyungil;Park, Seonyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.765-779
    • /
    • 2022
  • This study evaluates the accuracy in identifying the burned area in South Korea using multi-temporal data from Sentinel-2 MSI and Landsat 8/9 OLI. Spectral indices such as the Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), and Burned Area Index (BAI) were used to identify the burned area in the March 2022 forest fire in Uljin. Based on the results of six indices, the accuracy to detect the burned area was assessed for four satellites using Sentinel-2 and Landsat 8/9, respectively. Sentinel-2 and Landsat 8/9 produce images every 16 and 10 days, respectively, although it is difficult to acquire clear images due to clouds. Furthermore, using images taken before and after a forest fire to examine the burned area results in a rapid shift because vegetation growth in South Korea began in April, making it difficult to detect. Because Sentinel-2 and Landsat 8/9 images from February to May are based on the same date, this study is able to compare the indices with a relatively high detection accuracy and gets over the temporal resolution limitation. The results of this study are expected to be applied in the development of new indices to detect burned areas and indices that are optimized to detect South Korean forest fires.

Analysis of Vegetation Cover Fraction on Landsat OLI using NDVI (Landsat 8 OLI영상의 NDVI를 이용한 식생피복지수 분석)

  • Choi, Seokkeun;Lee, Soungki;Wang, Baio
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • The Vegetation cover is a significant factor to comprehend characteristics of the ground surface for meterological and hydrological models, which measure energy in the atmosphere or predict the runoff of ground surface. Deardorff introduced vegetation cover fraction to quantitatively comprehend the vegetation cover in 1978. After Deardorff, most of previous researches were conducted on low-resolution or high-resolution images, but only few researches on Landsat that are in medium-resolution images. Therefore, this study aims to investigate a way of calculating the vegetation cover fraction by using NDVI of Landsat images, which were hardly handled previously. For accurate vegetation cover fraction, we compared the evaluated parameters from this study with past vegetation cover fraction parameters that have been calculated for using NDVI of Landsat OLI images. The result of research was shown that NDVI is quite correlated with the vegetation fraction cover in the previous researches. In fact, RMSE of vegetation cover fraction values that obtained through the suggested parameters on this study showed the highest accuracy of 7.3% among all the cases.

Utilizing UPCA and SPCA in Unsupervised Classification Using Landsat TM data

  • Lee, Byung-Gul;Kang, In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.167-170
    • /
    • 2003
  • 본 연구는 무감독영상해석(Unsupervised Classification)에서 주성분 분석법(Principal Component Analysis)의 응용성을 연구하기 위하여, 주성분 분석법을 K-means, ISODATA 두가지 무감독분류법에 적용하였다. 적용대상지역은 제주도이다. 본 연구에서 주성분 분석 방법중에서 비정규형 주성분 분석방법 (Unstandardized PCA)과 정규형 주성분 분석방법(Standardized PCA) 두가지 경우로 나누어서 각각 연구하였다. 이를 위하여 제주도의 Landsat TM영상과 국토연구원에서 조사한 제주도 식생분류 조사자료와 현장조사 자료 그리고 1/25,000 수치지도를 이용하였다. 그리고 분석된 자료의 정확도를 평가하기 위하여 오차행렬(Error Matrix)을 도입하여 계산하였다. 우선 비정규형 주성분 분석법으로 구한 주성분 영상과 Landsat TM 원래 영상을 오차행렬을 이용하여 제주도의 식생 분류에 각각 적용하였다. 그 결과, K-means 무감독분류법에서는 Landsat TM 자료를 직접 이용한 경우에는 바다와 육상의 분류가 잘 되지 않았으며, 또한 전반적인 영상분류결과가 관측치와 많은 차이를 보였다. 그러나, 주성분 분석법으로 계산된 주성분 영상으로 K-means방법으로 분류 한 결과는 관측치와 잘 일치를 하였다. ISODATA의 경우, Landsat TM 원래영상을 계산하면, K-means으로 분류한 결과보다는 좋은 값을 나타냈으나, 주성분 분석법으로 구한 영상의 계산결과와 비교하면, 주성분 영상으로 구한 분류결과의 정확도가 약 15%정도 높게 나타났다. 정규형 주성분 분석법의 경우를 보면 K-means에서는 Landsat TM원래 자료보다 우수한 결과를 보여주었으나, 비정규형 주성분 분석법으로 계산된 결과보다는 정확도가 다소 떨어지는 단점이 있었고, ISODATA의 경우도 Landsat TM원래 자료보다 약 7%정도의 높은 정확도를 보였으나, 비정규형 영상보다는 약8%정도 낮은 정확도를 보였다. 본 연구에서 주성분 분석법으로 계산된 결과에서 주목되는 것은, 주성분 분석법으로 구한 주성분 영상은 분류방법(K-means, ISODATA, artificial neural networks)에 따라 분류된 결과값이 비슷하게 나타난 반면, Landsat TM원래 자료는 분류방법에 따라 결과값이 많은 차이를 보여 주었다. 그리고 주성분 분석 방법 중에서도 비정규형 주성분 분석법(Unstandardized PCA)이 정규형 주성분 분석법(Standardized PCA)보다 영상분석에서 더 좋은 결과를 보여주는 것으로 나타났다.

  • PDF