• Title/Summary/Keyword: LANDSAT

Search Result 1,074, Processing Time 0.028 seconds

A Study on the Environment Change of Tidal Flat in the Cheonsu Bay Using Remotely Sensed Data (원격탐사 자료를 이용한 천수만 간석지 환경변화에 관한 연구)

  • Jang, Dong-Ho;Chi, Kwang-Hoon;Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.1
    • /
    • pp.51-66
    • /
    • 2002
  • The purpose of this study is to analyze the geomorphological environment changes of tidal flat in the Cheonsu Bay. Especially, it centers on the changes in the sedimentary environment using remote sensing data. Multi-temporal Landsat data and topographic maps were used in this study. The results are summarized as follows: the tidal flat of Cheonsu Bay changes in many ways depending on the direction of the tidal current. In the neighborhood of Ganwoldo, the scale of the tidal flat has continuously been expanded due to the superiority of sedimentation after a tide embankment was built. When we analyzed the grain size of sediments and implemented in-situ field survey, it was found that the innermost part of the bay consists of a mud flat, with the midway part mixed flat, and the nearest part to the sea sand flat. On the other hand, in the neighborhood of Seomot isle and its beach, sedimentation is superior in the eastern part whereas erosion is superior in the western part. In other words, the western coast of the beach is contacted with the open seas and under much influence of ocean wave. The eastern coast is placed at the entrance of the bay and has sand bar and tidal flat developed due to submarine deposits that are accumulated on the sea floor by the tidal current. In conclusions, remote sensing methods can be effectively applied for quantitative analysis of geomorphological changes in tidal flat, and it is expected that the proposed schemes can be applied to another geomorphological environments such as beach, sand dune, and sand wave.

An Analysis of Environmental Policy Effect on Green Space Change using Logistic Regression Model : The Case of Ulsan Metropolitan City (로지스틱 회귀모형을 이용한 환경정책 효과 분석: 울산광역시 녹지변화 분석을 중심으로)

  • Lee, Sung-Joo;Ryu, Ji-Eun;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.4
    • /
    • pp.13-30
    • /
    • 2020
  • This study aims to analyze the qualitative and quantitative effects of environmental policies in terms of green space management using logistic regression model(LRM). Landsat satellite imageries in 1985, 1992, 2000, 2008, and 2015 are classified using a hybrid-classification method. Based on these classified maps, logistic regression model having a deforestation tendency of the past is built. Binary green space change map is used for the dependent variable and four explanatory variables are used: distance from green space, distance from settlements, elevation, and slope. The green space map of 2008 and 2015 is predicted using the constructed model. The conservation effect of Ulsan's environmental policies is quantified through the numerical comparison of green area between the predicted and real data. Time-series analysis of green space showed that restoration and destruction of green space are highly related to human activities rather than natural land transition. The effect of green space management policy was spatially-explicit and brought a significant increase in green space. Furthermore, as a result of quantitative analysis, Ulsan's environmental policy had effects of conserving and restoring 111.75㎢ and 175.45㎢ respectively for the periods of eight and fifteen years. Among four variables, slope was the most determinant factor that accounts for the destruction of green space in the city. This study presents logistic regression model as a way of evaluating the effect of environmental policies that have been practiced in the city. It has its significance in that it allows us a comprehensive understanding of the effect by considering every direct and indirect effect from other domains, such as air and water, on green space. We conclude discussing practicability of implementing environmental policy in terms of green space management with the focus on a non-statutory plan.

Application of Remote Sensing and GIS to Flood Monitoring and Mitigation

  • Petchprayoon, Pakorn;Chalermpong, Patiwet;Anan, Thanwarat;Polngam, Supapis;Simking, Ramphing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.962-964
    • /
    • 2003
  • In 2002 Thailand was faced with severe flooding in the North, Northeast and Central parts of the country caused by heavy rainfall of the monsoonal depression which brought about significant damages. According to the report by the Ministry of Interior and the Ministry of Agricultural and Co-operatives, the total damages were estimated to be about 6 billion bath. More than 850,000 farmers and 10 million livestock were effected. An area of 1,450,000 ha of farmland in 59 Provinces were put under water for a prolonged period. Satellite imageries were employed for mapping and monitoring the flood-inundated areas, flood damage assessment, flood hazard zoning and post-flood survey of river configuration and protection works. By integrating satellite data with other updated spatial and non-spatial data, likely flood zones can be predicted beforehand. Some examples of satellite data application to flood dis aster mitigation in Thailand during 2002 using mostly Radarsat-1 data and Landsat-7 data were illustrated and discussed in the paper. The results showed that satellite data can clearly identify and give information on the status, flooding period, boundary and damage of flooding. For comprehensive flood mitigation planning, other geo-informatic data, such as the elevation of topography, hydrological data need to be integrated. Ground truth data of the watershed area, including the water level, velocity, drainage pattern and direction were also useful for flood forecasting in the future.

  • PDF

Improvement of Land Cover / Land Use Classification by Combination of Optical and Microwave Remote Sensing Data

  • Duong, Nguyen Dinh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.426-428
    • /
    • 2003
  • Optical and microwave remote sensing data have been widely used in land cover and land use classification. Thanks to the spectral absorption characteristics of ground object in visible and near infrared region, optical data enables to extract different land cover types according to their material composition like water body, vegetation cover or bare land. On the other hand, microwave sensor receives backscatter radiance which contains information on surface roughness, object density and their 3-D structure that are very important complementary information to interpret land use and land cover. Separate use of these data have brought many successful results in practice. However, the accuracy of the land use / land cover established by this methodology still has some problems. One of the way to improve accuracy of the land use / land cover classification is just combination of both optical and microwave data in analysis. In this paper for the research, the author used LANDSAT TM scene 127/45 acquired on October 21, 1992, JERS-1 SAR scene 119/265 acquired on October 27, 1992 and aerial photographs taken on October 21, 1992. The study area has been selected in Hanoi City and surrounding area, Vietnam. This is a flat agricultural area with various land use types as water rice, secondary crops like maize, cassava, vegetables cultivation as cucumber, tomato etc. mixed with human settlement and some manufacture facilities as brick and ceramic factories. The use of only optical or microwave data could result in misclassification among some land use features as settlement and vegetables cultivation using frame stages. By combination of multitemporal JERS-1 SAR and TM data these errors have been eliminated so that accuracy of the final land use / land cover map has been improved. The paper describes a methodology for data combination and presents results achieved by the proposed approach.

  • PDF

The impact of land use and land cover changes on land surface temperature in the Yangon Urban Area, Myanmar

  • Yee, Khin Mar;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • Yangon Mega City is densely populated and most urbanization area of Myanmar. Rapid urbanization is the main causes of Land Use and Land Cover (LULC) change and they impact on Land Surface Temperature (LST). The objectives of this study were to investigate on the LST with respect to LULC of Yangon Mega City. For this research, Landsat satellite images of 1996, 2006 and 2014 of Yangon Area were used. Supervised classification with the region of interest and calculated change detection. Ground check points used 348 points for accuracy assessment. The overall accuracy indicated 89.94 percent. The result of this paper, the vegetation area decreased from $1061.08sq\;km^2$ (24.5%) in 1996 to $483.53sq\;km^2$ (11.2%) in 2014 and built up area clearly increased from $485.33sq\;km^2$ (11.2%) in 1996 to $1435.72sq\;km^2$ (33.1%) in 2014. Although the land surface temperature was higher in built up area and bare land, lower value in cultivated land, vegetation and water area. The results of the image processing pointed out that land surface temperature increased from $23^{\circ}C$, $26^{\circ}C$ and $27^{\circ}C$ to $36^{\circ}C$, $42^{\circ}C$ and $43.3^{\circ}C$ for three periods. The findings of this paper revealed a notable changes of land use and land cover and land surface temperature for the future heat management of sustainable urban planning for Yangon Mega city. The relationship of regression experienced between LULC and LST can be found gradually stronger from 0.8323 in 1996, 0.8929 in 2006 and 0.9424 in 2014 respectively.

Application of GIS for Runoff Simulation in Ungaged Basin(I): Selection of Soil Map and Landuse Map (미계측 유역의 유출모의를 위한 지리정보시스템의 응용(I) : 토양도 및 토지이용도의 선정)

  • Kim, Gyeong-Tak;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.163-176
    • /
    • 1999
  • Hydrology-based topographical informations generated by GIS techniques could be changed according to the selection of base map, algorithm of extraction, and so on. The purpose of this paper is to investigate the variation of SCS CN extracted by GIS technique and to propose the effective strategy for applying GIS to the rainfall-runoff simulation in ungaged basin. For experimental implementation, GIS spatial data, such as reconnaissance soil map, detailed interpretative soil map, landuse planning map and remotely sensed data(Landsat TM), were collected and generated to calculate the amount of effective rainfall in Pyungchang river basin. In applying SCS Runoff Curve Number to the test basin, the hydrological attribute data were analyzed. In addition, the characteristics of runoff responses according to the selection of GIS spatial data for SCS CN were reviewed. This study shows the applicability of GIS techniques to runoff simulation in ungaged basin by comparing with the measured flood hydrograph. It has been found that the detained interpretative soil map and remote sensing data are appropriate for calculating of SCS CN.

  • PDF

Development and Application of Total Maximum Daily Loads Simulation System Using Nonpoint Source Pollution Model (비점원오염모델을 이용한 오염총량모의시스템의 개발 및 적용)

  • Kang, Moon-Seong;Park, Seung-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.117-128
    • /
    • 2003
  • The objectives of this study are to develop the total maximum daily loads simulation system, TOLOS that is capable of estimating annual nonpoint source pollution from small watersheds, to monitor the hydrology and water quality of the Balkan HP#6 watershed, and to validate TOLOS with the field data. TOLOS consists of three subsystems: the input data processor based on a geographic information system, the models, and the post processor. Land use pattern at the tested watershed was classified from the Landsat TM data using the artificial neutral network model that adopts an error back propagation algorithm. Paddy field components were added to SWAT model to simulate water balance at irrigated paddy blocks. SWAT model parameters were obtained from the GIS data base, and additional parameters calibrated with field data. TOLOS was then tested with ungauged conditions. The simulated runoff was reasonably good as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.

An Analysis of Urban Open Space with Geographic Information Systems - A Case Study of Ansan City, Korea - (지리정보체계를 이용한 안산시의 오픈스페이스 분석)

  • 서동조;박종화
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.2
    • /
    • pp.89-113
    • /
    • 1990
  • The purpose of this study is to develop means to apply GIS and remote sensing technology to the analysis of Korean urban open spaces. To achieve this objective, a framework of analysis of urban open spaces was developed, and then the framework was applied for the evaluation of the potential and suitability of open spaces of Ansan City, which is a new town developed to accomodate industries relocation from Seoul, Korea, mainly due to their pollution problems. The software used in this study are IDRISI, a grid-based GIS, and KMIPS, a remote sensing analysis system. Both packages are based on IBM PC/AT computers with Microsoft DOS. Landsat MSS and TM data were used for the land use classification, land use change detection, and analysis of transformed vegetation indices. The size of the geographic data base is 110 rows and 150 columns with the spatial resolution of 100m$\times$100m. The framework of analysis includes both quanititative and qualitative analysis of open spaces. The quantitative analysis includes size and distribution of open spaces, urban develpment of open spaces, and the degree of vegree of vegetation removal of the study area. The qualitative analysis includes evaluative criteria for primary productivity of land, park use potential, major visual resources, and urban environmental control. The findings of this study can be summarized as follows. First, the size of builtup areas increased 18.73km$^2$, while the size of forest land decreased 10.86km$^2$ during last ten years. Agricultural lands maintained its size, but shifted toward outside of the city into forest. Second, the potential of open spaces for park use is limited mainly due to their lack of accessibility and connectivity among open spaces, in spite of ample acreage and good site conditions. Third, major landscape elements and historic sites should be connected to the open space system of the city by new accesses and buffers.

A Study on Change of Average SCS-CN Value by the Spatial Resolution (공간해상도에 따른 유역평균 SCS-N값 변화에 관한 연구)

  • Chang Eun-Mi;Jung In-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.361-368
    • /
    • 2004
  • Hydraulic models has a module to calculate SCS-CN values in order to estimate amount of water flow, which can be done with remotely sensed data and GIS data. The choice of the ancillary data tends to determine the range of SCS-CN values. We compare the results of SCS-CN value with satellite data of different spatial resolution and with soil maps of different scale. Mokhyun river basin was chosen,partly because of availbility of water quality and quantity data, partly because of rapid changes in land use and land cover since last ten years. The average CN values were calculated with spatial resolutions of 2.5 meter and 30 meter, We could not find any different result due to spatial resolution of CN resolution but due to both soil maps and to land cover maps. Further studies should be done for more than two kinds of satellite data.

Spatio-temporal Dynamic Alteration of Forest Canopy Density based on Site Associated Factor: View from Tropical Forest of Nepal

  • Panta, Menaka;Kim, Kye-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.313-323
    • /
    • 2006
  • Forest Canopy Density is a dynamic process mediated by various natural and anthropogenic factors. It can be changed over time and locations in the same forest type and landscape. However, human dimensions are considered as the primary force of landscape change and subsequent forest canopy loss in tropical regions of the world. Many studies have been indicated that roads have a far greater impact on forests than simply allowing access for human use. Similarly, rivers have been used as means of transportation, hence illegal logging and felling further deplete forest canopy density. The main objective of this study was to investigate the spatio-temporal dynamic alterations of Forest Canopy Density (FCD) across with site associated factors such as biophysical, physical and human interferences in tropical region of Nepal from 1988 to 2001. Landsat TM and ETM+ of 1988 and 2001 were used to assess the spatial and temporal dynamic alterations of FCD. This analysis revealed that distance to human settlements at P=<0.01, rivers, human interferences (path and fire) and species composition had a statistically significance at P=<0.05 level. However, other factors did not show any significant relation. So, we concluded that understanding of dynamic alterations of FCD with respect to factors was quite complex phenomena. Other surrounding environment could also playa significant role. A comprehensive analysis could be required to understand such complexities. Therefore, additional factors such as climatic, biophysical, social, and institutional with respect to spatio-temporal variability should be considered for the better understanding of canopy dynamic.