• Title/Summary/Keyword: L6 myotubes

Search Result 13, Processing Time 0.023 seconds

Fagopyritol, a Derivative of D-chiro-inositol, Induces GLUT4 Translocation via Actin Filament Remodeling in L6-GLUT4myc Skeletal Muscle Cells (랫드 근육세포에서 fagopyritol이 액틴 필라멘트 구조와 포도당 수송체 4에 미치는 영향)

  • Nam, Hajin;Hwang, In Koo;Jung, Harry;Kwon, Seung-Hae;Park, Ok Kyu;Suh, Jun Gyo
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1163-1169
    • /
    • 2013
  • Insulin induces glucose transporter 4 (GLUT4) translocation to the muscle cell surface. As fagopyritol has insulin-like effects, the effects of fagopyritol on GLUT4 translocation and filamentous (F) actin remodeling in L6-GLUT4myc skeletal muscle cells were investigated. Fagopyritol significantly increased plasma membrane GLUT4 levels compared with the basal control in L6-GLUT4myc myoblast cells. Phosphatidylinositol (PI) 3-kinase inhibitor (LY294002) treatment prevented GLUT4 translocation to the plasma membrane in the myoblasts. Fagopyritol treatment apparently stimulates F-actin remodeling in myoblasts. In addition, fagopyritol treatment induced GLUT4 translocation and F-actin remodeling in myotubes. Taken together, these results suggest that fagopyritol promotes GLUT4 translocation and F-actin remodeling by activating the PI 3-kinase-dependent signaling pathway.

Effect of mixed plant-extract powder on the regulation of differentiation and oxidative stress-induced apoptosis in C2C12 cells (식물 추출물 혼합 분말이 C2C12 세포 내 분화 및 산화적 스트레스 유발 세포사멸 조절에 미치는 효과)

  • Se-Eun Park;Dabin Choi;Kyo-nyeo Oh;Hanjoong Kim;Hyungbum Park;Ki-Man Kim
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.298-306
    • /
    • 2024
  • This study evaluated the differentiation and protective effects of mixed plant-extract powder in C2C12 muscle cells. Cells were differentiated into myotubes in 2% horse serum (HS)-containing medium with mixed plant-extract powder (MPEP) for 6 days. Treatment with MPEP increased the expression of myogenin and myosin heavy chain (MHC) protein in cells compared with non-treated cells. Differentiated cells were pretreated with MPEP, and hydrogen peroxide (H2O2). Our results revealed that treatment with MPEP before H2O2 treatment increased cell viability and decreased H2O2-induced lactate dehydrogenase (LDH) and creatine kinase (CK). In addition, MPEP attenuated H2O2-induced upregulation of Bax, downregulation of Bcl-2, and activation of caspase-9 and -3. These results suggest the MPEP can stimulate C2C12 muscle cell differentiation into myotubes and observe the protective effect of mixed plant-extract powder against muscle oxidative stress. In conclusion, MPEP may be useful as a prevention and treatment material for skeletal muscle disease caused by age-related diseases.

Effects of polygalacin D extracted from Platycodon grandiflorum on myoblast differentiation and muscle atrophy (길경에서 추출한 polygalacin D가 근원세포 분화 및 근위축에 미치는 영향)

  • Eun-Ju Song;Ji-Won Heo;Jee Hee Jang;Eonmi Kim;Yun Hee Jeong;Min Jung Kim;Sung-Eun Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.602-614
    • /
    • 2023
  • Purpose: The balance between synthesis and degradation of proteins plays a critical role in the maintenance of skeletal muscle mass. Mitochondrial dysfunction has been closely associated with skeletal muscle atrophy caused by aging, cancer, and chemotherapy. Polygalacin D is a saponin derivative isolated from Platycodon grandiflorum (Jacq.) A. DC. This study aimed to investigate the effects of polygalacin D on myoblast differentiation and muscle atrophy in association with mitochondrial function in in vitro and in zebrafish models in vivo. Methods: C2C12 myoblasts were cultured in differentiation media containing different concentrations of polygalacin D, followed by the immunostaining of the myotubes with myosin heavy chain (MHC). The mRNA expression of markers related to myogenesis, muscle atrophy, and mitochondrial function was determined by real-time quantitative reverse transcription polymerase chain reaction. Wild type AB* zebrafish (Danio rerio) embryos were treated with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with or without polygalacin D, and immunostained to detect slow and fast types of muscle fibers. The Tg(Xla.Eef1a1:mitoEGFP) zebrafish expressing mitochondria-targeted green fluorescent protein was used to monitor mitochondrial morphology. Results: The exposure of C2C12 myotubes to 0.1 ng/mL of polygalacin D increased the formation of MHC-positive multinucleated myotubes (≥ 8 nuclei) compared with the control. Polygalacin D significantly increased the expression of MHC isoforms (Myh1, Myh2, Myh4, and Myh7) involved in myoblast differentiation while it decreased the expression of atrophic markers including muscle RING-finger protein-1 (MuRF1), mothers against decapentaplegic homolog (Smad)2, and Smad3. In addition, polygalacin D promoted peroxisome proliferator-activated receptor-gamma coactivator (Pgc1α) expression and reduced the level of mitochondrial fission regulators such as dynamin-1-like protein (Drp1) and mitochondrial fission 1 (Fis1). In a zebrafish model of FOLFIRI-induced muscle atrophy, polygalacin D improved not only mitochondrial dysfunction but also slow and fast muscle fiber atrophy. Conclusion: These results demonstrated that polygalacin D promotes myogenesis and alleviates chemotherapy-induced muscle atrophy by improving mitochondrial function. Thus, polygalacin D could be useful as nutrition support to prevent and ameliorate muscle wasting and weakness.