• 제목/요약/키워드: L6 myoblasts

검색결과 21건 처리시간 0.025초

The Expression and the Subcellular Localization of Regulatory Subunits of Class IA Phosphoinositide 3-Kinase in L6 Skeletal Muscle Cell

  • Woo Joo-Hong;Lim Jeong-Soon;Kim Hye-Sun
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.201-208
    • /
    • 2006
  • PI3-kinase activity through p85, the regulatory subunit of class IA PI3-kinase, is indispensable for the growth, differentiation, and survival of skeletal muscle cells, but little is known about the function of other regulatory subunits such as p55 and p50. We examined the subcellular localization and the expression of the regulatory subunits of class IA PI3-kinase in L6 myoblasts. Both p55 and p50 as well as p85 were expressed in L6 myoblasts. Whereas p85 was localized at both cytosolic and nuclear tractions, p55 and p50 were localized at only the nuclear traction. During the differentiation of L6 myoblasts, the protein concentrations of both p55 and p50 were decreased but that of p85 was not significantly changed. Menadione-induced oxidative stress induced the translocation of p85 from cytosol to nucleus and the increase of p55 expression. These results suggest that the regulatory subunits of class IA PI3-kinase play an important role in L6 myoblasts.

  • PDF

쥐L6 근원세포에서 miR-128의 근육세포 분화와 인슐린신호에서의 역할 (Roles of miR-128 in Myogenic Differentiation and Insulin Signaling in Rat L6 Myoblasts)

  • 오명주;김소현;김지현;전병학
    • 생명과학회지
    • /
    • 제30권9호
    • /
    • pp.772-782
    • /
    • 2020
  • 골격근의 분화 또는 근육 분화는 근육량과 신진대사 항상성을 유지하기 위해 중요하다. 근육 특이적 microRNAs (miRNAs)는 골격근 분화에 중요한 역할을 한다. 본 연구에서는 rat miRNAs 마이크로어레이를 사용하여 rat L6 근아세포의 근육 분화 과정에서의 miRNAs 발현 양상을 조사했다. 우리는 miR-128의 발현 증가를 발견했고, 동시에 이미 알려진 근육 분화 조절 miRNAs인 miR-1, miR-133b와 mi-206의 발현 증가를 확인했다. 이 microarray 결과를 확인하기위해 우리는 Quantitative RT-PCR 기술을 사용하였고, microarray 결과와 유사하게 발현 초기 mRNAs와 발현 후 성숙 miRNAs에서 모두 miR-128의 발현 증가를 확인했다. 또한 Rat L6 근아세포로의 miR-128 발현 향상은 muscle creatine kinase (MCK), myogenin, myosin heavy chain (MHC)와 같은 근육분화 표지 유전자 발현을 유발했고, 또한 MHC의 단백질 발현을 증가시켰다. 억제 PNAs를 사용한 miR-128의 작용 억제는 이러한 근육 분화 표지 유전자들의 발현을 차단했다. 또한, miR-128 발현 향상은 Erk와 Akt 단백질의 인슐린 자극에 의한 인산화를 증가시켰고, 고인슐린혈증과 고혈당증으로 인해 유도된 인슐린 저항성으로 인한 Erk와 Akt의 억제된 인산화를 회복했다. 이러한 발견은 miR-128이 근육분화와 인슐린 작용에 중요한 역할을 할 수 있다는 것을 시사한다.

Mitochondrial dysfunction reduces the activity of KIR2.1 K+ channel in myoblasts via impaired oxidative phosphorylation

  • Woo, JooHan;Kim, Hyun Jong;Nam, Yu Ran;Kim, Yung Kyu;Lee, Eun Ju;Choi, Inho;Kim, Sung Joon;Lee, Wan;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.697-703
    • /
    • 2018
  • Myoblast fusion depends on mitochondrial integrity and intracellular $Ca^{2+}$ signaling regulated by various ion channels. In this study, we investigated the ionic currents associated with $[Ca^{2+}]_i$ regulation in normal and mitochondrial DNA-depleted(${\rho}0$) L6 myoblasts. The ${\rho}0$ myoblasts showed impaired myotube formation. The inwardly rectifying $K^+$ current ($I_{Kir}$) was largely decreased with reduced expression of KIR2.1, whereas the voltage-operated $Ca^{2+}$ channel and $Ca^{2+}$-activated $K^+$ channel currents were intact. Sustained inhibition of mitochondrial electron transport by antimycin A treatment (24 h) also decreased the $I_{Kir}$. The ${\rho}0$ myoblasts showed depolarized resting membrane potential and higher basal $[Ca^{2+}]_i$. Our results demonstrated the specific downregulation of $I_{Kir}$ by dysfunctional mitochondria. The resultant depolarization and altered $Ca^{2+}$ signaling might be associated with impaired myoblast fusion in ${\rho}0$ myoblasts.

강황 열수 추출물의 항산화 활성 및 C2C12 Myoblasts의 산화적 손상에 대한 보호 효과 (Antioxidant Activities and Protective Effects of Hot Water Extract from Curcuma longa L. on Oxidative Stress-Induced C2C12 Myoblasts)

  • 정혜진;김신태;박정진;김기홍;김경미;전우진
    • 한국식품영양과학회지
    • /
    • 제46권11호
    • /
    • pp.1408-1413
    • /
    • 2017
  • 본 연구에서는 강황 열수 추출물의 항산화 활성 및 산화적 스트레스에 대한 보호 효과를 확인하고자 하였다. 항산화 활성을 확인하기 위해 총 페놀성 화합물 함량, 총 플라보노이드 함량 및 라디칼 소거능을 측정하였다. 강황 열수 추출물의 총 페놀성 화합물 및 플라보노이드 함량은 각각 $2,474.4{\pm}31.9mg$ GAE/100 g 및 $892.1{\pm}21.2mg$ CE/100 g으로 나타났다. 강황 열수 추출물의 라디칼 소거능은 DPPH 및 ABTS 라디칼을 이용하여 측정하였다. 실험 결과 DPPH 및 ABTS 라디칼 소거능을 $SC_{50}$ 값으로 계산하였을 때 각각 $188.5{\pm}3.0{\mu}g/mL$$92.0{\pm}0.9{\mu}g/mL$로 나타났다. 이러한 라디칼 소거능에는 강황 열수 추출물에 함유되어 있는 총 페놀성 화합물 및 플라보노이드가 영향을 미쳤을 것이라고 판단된다. C2C12 myoblast에 강황 열수 추출물을 처리하였을 때 $1,000{\mu}g/mL$ 농도까지 세포 독성이 나타나지 않음을 확인하였으며, 안전성이 확인된 $500{\mu}g/mL$ 농도까지 실험을 진행하였다. 강황 열수 추출물의 $H_2O_2$에 대한 보호 효과를 측정한 결과 강황 열수 추출물을 처리하였을 때 농도 의존적으로 보호 효과가 나타나는 것을 확인할 수 있었다. 또한, $H_2O_2$ 처리 후 DCF-DA 방법을 이용하여 세포 내 활성산소종(ROS) 수준을 측정한 결과 강황 열수 추출물을 처리하였을 때 세포 내 ROS 수준이 유의적으로 감소하는 것을 확인하였다. 이상의 결과로부터 강황 열수 추출물은 항산화 활성을 나타냈으며, C2C12 myoblast에 $H_2O_2$로 유도된 산화적 스트레스를 감소시키는 효과를 나타내는 것으로 생각된다.

Differential Regulation of the Promoter Activity of the Mouse UCP2 and UCP3 Genes by MyoD and Myogenin

  • Kim, Dong-Ho;Jitrapakdee, Sarawut;Thompson, Mary
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.921-927
    • /
    • 2007
  • UCP2 and UCP3 are members of the uncoupling protein family, which may play roles in energy homeostasis. In order to determine the regulation of the predominant expression of UCP3 in skeletal muscle, the effects of differentiation and myogenic regulatory factors on the promoter activities of the mouse UCP2 and UCP3 genes were studied. Reporter plasmids, containing approximately 3 kb of the 5'-upstream region of the mouse UCP2 and UCP3 genes, were transfected into C2C12 myoblasts, which were then induced to differentiate. Differentiation positively induced the reporter expression about 20-fold via the UCP3 promoter, but by only 2-fold via the UCP2 promoter. C2C12 myoblasts were cotransfected with expression vectors for myogenin and/or MyoD as well as reporter constructs. The simultaneous expression of myogenin and MyoD caused an additional 20-fold increase in the reporter expression via the UCP3 promoter, but only a weak effect via the UCP2 promoter. In L6 myoblasts, only MyoD activated the UCP3 promoter, but in 3T3-L1 cells neither factor activated the UCP3 promoter, indicating that additional cofactors are required, which are present only in C2C12 myoblasts. The expression of UCP2 and UCP3 is differentially regulated during muscle differentiation due to the different responsiveness of their promoter regions to myogenin and MyoD.

p38 MAPK Participates in Muscle-Specific RING Finger 1-Mediated Atrophy in Cast-Immobilized Rat Gastrocnemius Muscle

  • Kim, Jung-Hwan;Won, Kyung-Jong;Lee, Hwan-Myung;Hwang, Byong-Yong;Bae, Young-Min;Choi, Whan-Soo;Song, Hyuk;Lim, Ki-Won;Lee, Chang-Kwon;Kim, Bo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권6호
    • /
    • pp.491-496
    • /
    • 2009
  • Skeletal muscle atrophy is a common phenomenon during the prolonged muscle disuse caused by cast immobilization, extended aging states, bed rest, space flight, or other factors. However, the cellular mechanisms of the atrophic process are poorly understood. In this study, we investigated the involvement of mitogen-activated protein kinase (MAPK) in the expression of muscle-specific RING finger 1 (MuRF1) during atrophy of the rat gastrocnemius muscle. Histological analysis revealed that cast immobilization induced the atrophy of the gastrocnemius muscle, with diminution of muscle weight and cross-sectional area after 14 days. Cast immobilization significantly elevated the expression of MuRF1 and the phosphorylation of p38 MAPK. The starvation of L6 rat skeletal myoblasts under serum-free conditions induced the phosphorylation of p38 MAPK and the characteristics typical of cast-immobilized gastrocnemius muscle. The expression of MuRF1 was also elevated in serum-starved L6 myoblasts, but was significantly attenuated by SB203580, an inhibitor of p38 MAPK. Changes in the sizes of L6 myoblasts in response to starvation were also reversed by their transfection with MuRF1 small interfering RNA or treatment with SB203580. From these results, we suggest that the expression of MuRF1 in cast-immobilized atrophy is regulated by p38 MAPK in rat gastrocnemius muscles.

A Possible Role of Kainate Receptors in C2C12 Skeletal Myogenic Cells

  • Park, Jae-Yong;Han, Jae-Hee;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.375-379
    • /
    • 2003
  • $Ca^{2+}$ influx appears to be important for triggering myoblast fusion. It remains, however, unclear how $Ca^{2+}$ influx rises prior to myoblast fusion. Recently, several studies suggested that NMDA receptors may be involved in $Ca^{2+}$ mobilization of muscle, and that $Ca^{2+}$ influx is mediated by NMDA receptors in C2C12 myoblasts. Here, we report that other types of ionotropic glutamate receptors, non-NMDA receptors (AMPA and KA receptors), are also involved in $Ca^{2+}$ influx in myoblasts. To explore which subtypes of non-NMDA receptors are expressed in C2C12 myogenic cells, RT-PCR was performed, and the results revealed that KA receptor subunits were expressed in both myoblasts and myotubes. However, AMPA receptor was not detected in myoblasts but expressed in myotubes. Using a $Ca^{2+}$ imaging system, $Ca^{2+}$ influx mediated by these receptors was directly measured in a single myoblast cell. Intracellular $Ca^{2+}$ level was increased by KA, but not by AMPA. These results were consistent with RT-PCR data. In addition, KA-induced intracellular $Ca^{2+}$ increase was completely suppressed by treatment of nifedifine, a L-type $Ca^{2+}$ channel blocker. Furthermore, KA stimulated myoblast fusion in a dose-dependent manner. CNQX inhibited not only KA-induced myoblast fusion but also spontaneous myoblast fusion. Therefore, these results suggest that KA receptors are involved in intracellular $Ca^{2+}$ increase in myoblasts and then may play an important role in myoblast fusion.

Suppressed Cell Proliferation and Differentiation Following an Over-expression of Myostatin is Associated with Inhibited Expression of Insulin-like Growth Factor II and Myogenin in Rat L6 Myoblasts

  • Jin, Eun-Jung;Kim, Inae;Lee, C. Young;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권10호
    • /
    • pp.1508-1513
    • /
    • 2006
  • Myostatin (MSTN) and insulin-like growth factors (IGFs) are a known inhibitor and stimulators of proliferation and differentiation of muscle cells, respectively. The present study was performed to investigate the relationship of MSTN-induced growth inhibition to expression of the IGF system components and myogenin, a muscle cell-specific transcription factor, in rat L6 myoblasts. The L6 cells transfected with a green fluorescent protein-MSTN plasmid expression construct had a 47% less cell number than mock-transfected cells after 3-d serum-free culture, accompanied by delayed differentiation which was suggested by inhibited aggregation of cells. Moreover, cells transfected with the expression construct had decreased expression of IGF-II and myogenin genes, but not IGF-I or its receptor genes, as examined by reverse transcription-polymerase chain reaction. The reduced mitosis of the L6 cells transfected with the MSTN-expression construct increased following an addition of either IGF-I or IGF-II to the culture medium, but not to the level of mock-transfected cells. By contrast, myogenin gene expression in these cells increased after the addition of either IGF to the level of mock-transfected cells. Collectively, these results suggest that the inhibitory effect of MSTN on L6 cell proliferation and differentiation is likely to be partly mediated by serially suppressed expression of IGF-II and myogenin genes, not IGF-I gene.

랫드 근육세포에서 fagopyritol이 액틴 필라멘트 구조와 포도당 수송체 4에 미치는 영향 (Fagopyritol, a Derivative of D-chiro-inositol, Induces GLUT4 Translocation via Actin Filament Remodeling in L6-GLUT4myc Skeletal Muscle Cells)

  • 남하진;황인구;정혜리;권승해;박옥규;서준교
    • 생명과학회지
    • /
    • 제23권9호
    • /
    • pp.1163-1169
    • /
    • 2013
  • 인슐린은 근육세포 표면으로 포도당 수송체 4(glucose transporter 4, GLUT4)를 유도하여 혈액 속의 포도당을 세포 내로 유입시키도록 작용한다고 알려져 있다. Fagopyritol은 인슐린과 유사한 작용을 하는 것으로 알려져 있으므로, 본 연구에서는 혈당강하 효과가 있다고 알려진 fagopyritol을 랫드의 근육세포주(L6GLUT4myc 세포)에 처리하여, 아직 명확하게 밝혀지지 않은 fagopyritol의 혈당강하 기전을 규명하고자 수행하였다. Fagopyritol의 혈당강하 기전을 규명하기 위하여 근원세포(myoblast)와 근관세포(myotube)에 fagopyritol을 처리하여 액틴 필라멘트의 구조와 GLUT4에 미치는 영향을 분석하였다. Fagopyritol을 myoblast에 처리하였을 때, GLUT4가 처리군에서 대조군과 비교하여 유의 있게 원형질막 쪽으로 유도되는 것을 확인하였고, 액틴 필라멘트의 구조가 재조정되면서 GLUT4의 이동을 돕는 것으로 생각된다. 또한 fagopyritol이 인슐린과 유사한 작용 경로를 가지는지 확인하기 위하여, 인슐린 작용 경로에서 중요한 역할을 하는 것으로 알려진 phosphatidylinositol 3-kinase (PI3K)의 억제제인 LY294002를 fagopyritol과 함께 처리하였을 때 GLUT4가 원형질막 쪽으로 유도되지 않는 것을 확인하였다. Fagopyritol을 myotube에 처리하였을 때, myoblast에 처리하였을 때와 유사한 결과를 나타내었다. 이러한 결과를 종합하면 fagopyritol이 인슐린과 유사한 작용을 하여 액틴 필라멘트의 구조 변경과 GLUT4의 이동을 촉진시키는 것으로 사료된다.

Phosphorylation of Eukaryotic Elongation Factor 2 Can Be Regulated by Phosphoinositide 3-Kinase in the Early Stages of Myoblast Differentiation

  • Woo, Joo Hong;Kim, Hye Sun
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.294-301
    • /
    • 2006
  • We have previously reported that phosphorylation of eukaryotic elongation factor 2 (eEF2) is related to the differentiation of chick embryonic muscle cells in culture. In the present study, we found that eEF2 phosphorylation declined shortly after induction of differentiation of L6 myoblasts, when the cells prepare for terminal differentiation by withdrawing from the cell cycle. This decrease in phosphorylation was prevented by inhibitors of phosphoinositide 3-kinase (PI3-kinase) that strongly inhibit myoblast differentiation. We hypothesized that PI3-kinase plays an important role in myoblast differentiation by regulating eEF2 phosphorylation in the early stages of differentiation. To test this hypothesis, myoblasts were synchronized at in $G_2/M$ and cultured in fresh differentiation medium (DM) or growth medium (GM). In DM the released cells accumulated in $G_0$/$G_1$ while in GM they progressed to S phase. In addition, cyclin D1 was more rapidly degraded in DM than in GM, and eEF2 phosphorylation decreased more. Inhibitors of PI3-kinase increased eEF2 phosphorylation, but PI3-kinase became more activated when eEF2 phosphorylation declined. These results suggest that the regulation of L6 myoblast differentiation by PI3-kinase is related to eEF2 phosphorylation.