• Title/Summary/Keyword: L5-S1 segment

Search Result 77, Processing Time 0.025 seconds

Effects on the Adjacent Motion Segments according to the Artificial Disc Insertion (인공 추간판 적용으로 인한 인접 운동 분절의 영향)

  • Kim, Young-Eun;Yun, Sang-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.122-129
    • /
    • 2007
  • To evaluate the effect of artificial disc implantation and fusion on the biomechanics of adjacent motion segment, a nonlinear three-dimensional finite element model of whole lumbar spine (L1-S1) was developed. Biomechanical analysis was performed for two different types of artificial disc, ProDisc and SB $Charit{\acute{e}}$ III model, inserted at L4-L5 level and these results were also compared with fusion case. Angular motion of vertebral body, forces on the spinal ligaments and facet joint under sagittal plane loading with a compressive preload of 150 N at a nonlinear three-dimensional finite element model of Ll-S1 were compared. The implant did not significantly alter the kinematics of the motion segment adjacent to the instrumented level. However, $Charit{\acute{e}}$ III model tend to decrease its motion on the adjacent levels, especially in extension motion. Contrast to motion and ligament force changes, facet contact forces were increased in the adjacent levels as well as implanted level for constrained instantaneous center of rotation model, i.e. ProDisc model.

Minimally Invasive Transforaminal Lumbar Interbody Fusion Using a Single Interbody Cage and a Tubular Retraction System : Technical Tips, and Perioperative, Radiologic and Clinical Outcomes

  • Lee, Chang-Kyu;Park, Jeong-Yoon;Zhang, Ho-Yeol
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.3
    • /
    • pp.219-224
    • /
    • 2010
  • Objective : A minimally invasive transforaminal lumbar interbody fusion (MIS TLlF) has recently been introduced. However, MIS TLlF is a technically challenging procedure. The authors performed retrospective analysis about MIS TLlF using a single interbody cage. Methods : Twenty-eight consecutive patients were treated by MIS TLlF. Of these 28 patients, 20 patients were included in this retrospective study. Perioperative, clinical, and radiologic outcomes were assessed. Clinical outcomes were assessed using Oswestry Disability Index (ODI) and Visual Analogue Scores (VAS). Fusion rates and cross-sections of operated spinal canals were assessed by CT. Results : Twelve patients underwent MIS TLlF at one segment and 8 patients at two segments (L3/4: 4, L4/5: 17, L5/S1: 7). Operation time for a single segment was 131.7 min and for two segment was 201.4 min, and corresponding blood losses were 208.3 mL and 481.2 mL, respectively. ODI and VAS scores were significantly improved at 6 months postop (ODI from 30.32 to 15.54, VAS from 7.80 to 2.20, p = 0.001) Twenty-two segments (78.6%) achieved grade I fusion, 4 segments (14.3%) achieved grade II, 2 segments (7.1%) achieved grade III and 0 segments achieved grade IV at 12 months. Postoperatively at 12 months, spinal canal cross sectional areas at disc spaces significantly increased from 157.5 to $294.3\;mm^2$ (p = 0.012). Conclusion : MIS TLlF achieved good clinical outcomes and high fusion rates. Our findings show that MIS TLlF performed with a single Interbody cage and a tubular retractor system can be used as a standard MIS TLlF technique.

Analysis of biomechanical change of adjacent motion segment of the lumbar spine with an implanted artificial disc (인공추간판 적용 시 인접 운동 분절에서의 변화 분석)

  • Kim Y.E.;Yun S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.244-247
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain and used clinically, biomechanical change with its implantation seldom studied. To evaluate the effect of artificial disc implantation on the biomechanics of lumbar spinal unit, nonlinear three-dimensional finite element model of L1-L5, S1 was developed and strain and stress of vertebral body and surrounding spinal ligaments were predicted. Intact osteoligamentous L1-L5, S1 model was created with 1-mm CT scan of a volunteer and known material property of each element were applied. This model also includes the effect of local muscles which was modeled with pre-strained spring elements. The intact model was validated with reported biomechanical data. Two models implanted with artificial discs, SB Charite or Prodisc, at L4/5 via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments, facet joint contact force with $2\sim12$ Nm flexion-extension moment.

  • PDF

Change of Lumbar Motion after Multi-Level Posterior Dynamic Stabilization with Bioflex System : 1 Year Follow Up

  • Park, Hun-Ho;Zhang, Ho-Yeol;Cho, Bo-Young;Park, Jeong-Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.285-291
    • /
    • 2009
  • Objective : This study examined the change of range of motion (ROM) at the segments within the dynamic posterior stabilization, segments above and below the system, the clinical course and analyzed the factors influencing them. Methods : This study included a consecutive 27 patients who underwent one-level to three-level dynamic stabilization with Bioflex system at our institute. All of these patients with degenerative disc disease underwent decompressive laminectomy with/without discectomy and dynamic stabilization with Bioflex system at the laminectomy level without fusion. Visual analogue scale (VAS) scores for back and leg pain, whole lumbar lordosis (from L1 to S1), ROMs from preoperative, immediate postoperative, 1.5, 3, 6, 12 months at whole lumbar (from L1 to S1), each instrumented levels, and one segment above and below this instrumentation were evaluated. Results : VAS scores for leg and back pain decreased significantly throughout the whole study period. Whole lumbar lordosis remained within preoperative range, ROM of whole lumbar and instrumented levels showed a significant decrease. ROM of one level upper and lower to the instrumentation increased, but statistically invalid. There were also 5 cases of complications related with the fixation system. Conclusion : Bioflex posterior dynamic stabilization system supports operation-induced unstable, destroyed segments and assists in physiological motion and stabilization at the instrumented level, decrease back and leg pain, maintain preoperative lumbar lordotic angle and reduce ROM of whole lumbar and instrumented segments. Prevention of adjacent segment degeneration and complication rates are something to be reconsidered through longer follow up period.

Somatic Embryogenesis in Withania somnifera (L.) Dunal

  • Rani, Gita;Virk, Gurdip Singh;Nagpal, Avinash
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.113-118
    • /
    • 2004
  • Somatic embryos were formed from calli obtained from axillary shoots (raised from nodal segments of glasshouse-grown plants under aseptic conditions), internodal segments (from in vitro-raised plants), and root and coty-ledonary leaf segments (from in vitro-raised seedlings) after 8 weeks of initial culture. Embryo formation was the highest (97.33%) from cotyledonary leaf callus on Mura-shige and Skoog's (MS) medium containing kinetin (KN) (3 mg/L). Somatic embryo induction was lesser with different combinations of auxins while it increased to 100% in internodal segment and cotyledonary leaf calli with 6-benzyladenine (BA) (2mg/L) along with 2,3,5-triiodobenzoic acid (TIBA) (2mg/L). The shoots were induced from somatic embryos raised from root, coty-ledonary leaf and internodal segment calli grown on MS medium containing BA in combination with indole-3-acetic acid (IAA). Maximum of 66.67% cultures formed shoots on MS medium containing BA (1mg/L) in combination with IAA (2mg/L). The shoots raised from somatic embryos were rooted on MS medium supplemented with indole-3-butyric acid (IBA) (2mg/L). The plantlets transferred to the field showed 70% survival rate after one year.

Regional load deflection rate of multiloop edgewise archwire (Multiloop edgewise arch wire의 부위별 하중변형률)

  • Kim, Byoung-Ho;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.29 no.6 s.77
    • /
    • pp.673-688
    • /
    • 1999
  • This study was conducted in order to analyze the mechanical characteristics of multiloop edgewise archwire (MEAW). The purposes were 1) to compare load deflection rate (LDR) of MEAW with that of various other arch wires in the individual interbracket span, 2) to compare the wire stiffness in the interbracket span with that in the multi-L-loop region (the span from distal border of the bracket of the lateral incisor to the mesial border of the buccal tube of the second molar), and 3) to verify the experimental results with theoretically derived formula. The single L-loops of five different horizontal lengths and multi-L-loops for the upper and lower arches were made out of .$016\times.022$ permachrome stainless steel wire. Straight segment of plain stainless steel, TMA and NiTi wire of the same dimension were prepared. The LDR was measured using Instron model 4466 with the load cell of 50N capacity at cross head speed of 1.0mm/min, and maximum deflection of 1.0mm. Five specimens were tested under each experimental condition. The wire stiffness number for each interbracket region and multi-L-loop region was calculated from the LDR and the interbracket spans. By dividing the theoretical model of multi-L-loop into 35 linear segments, the energy stored in each segment was obtained. Then the LDR and wire stiffness of single L-loop and multi-L-loop were calculated and compared. The findings were as follows : 1) The average LDR of MEAW in the individual interbracket region was 1/1.53 of that of the NiTi,1/2.47 of TMA and 1/5.16 of the plain stainless steel wire. 2) The wire stiffness of MEAW in the multi-L-loop region was 1.53 times larger than that in the interbracket region, and the LDR was almost twice as large as that of NiTi in that region. 3) According to the theoretically derived equation, the wire stiffness of the single L-loop was lower than that of multi-L-loop. The results of this study suggest that MEAW has the unique mechanical Property which could allow individual tooth movement and transmit elastic force effectively through the entire arch wire.

  • PDF

Is Adjacent Segment Disease More Frequent in Proximal Levels in Comparison with Distal Levels? Based on Radiological Data of at Least 2 Years Follow Up with More than 2 Level Thoracolumbar Fusions

  • Kim, Jung-Ho;Ryu, Dal-Sung;Yoon, Seung-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.603-609
    • /
    • 2019
  • Objective : The purpose of this retrospective study was to determine which of the proximal adjacent segment disease (ASD) and distal ASD was more prevalent and what parameters is more related to ASD in proximal levels and distal levels after more than 2 levels fusions. Methods : The medical records were reviewed retrospectively for 856 cases. A total of 66 cases of ASD were enrolled. On preop magnetic resonance imaging, disc degeneration was measured at the upper and lower parts of surgically treated levels and confirmed by the commonly used Pfirrmann grade. Segmental flexibility in sagittal plane was embodied in segment range of motion (ROM) obtained through flexion and extension X-ray before surgery. Coronal angle was recorded as methods Cobb's angle including fusion levels preoperatively. For the comparison of categorical variables between two independent groups, the chi-square test and Fisher exact test were performed. Results : Proximal ASD and distal ASD were 37/856 (4.32%) and 29/856 (3.39%), respectively. The incidence of proximal ASD was relatively high but insignificant differences. In comparison between ASD group and non ASD group, proximal Pfirmman was higher in proximal ASD and distal Pfirmman was higher in distal ASD group (p=0.005, p<0.008, respectively). However, in the ROM, proximal ROM was higher in proximal ASD, but distal ROM was not different between the two groups (p<0.0001, p=0.995, respectively). Coronal angle was not quite different in both groups (p=0.846). Conclusion : In spite of higher frequency in ASD in proximal level in spinal fusion, it is not clear that incidence of ASD in proximal level is not higher than that of distal ASD group in more than 2 level thoracolumbar fusions. Not only Pfirrmann grade but also proximal segmental ROM is risk factor for predicting the occurrence of ASD in patients more than 2 level of thoracolumbar spine fusion operation excluding L5S1.

The Change of Motion Ranges of Adjacent Vertebral Joints after Lumbar Fusion Operation (요추 고정수술 후 인접척추 운동범위의 변화)

  • Yeo, Sang-Jun;Park, Seung-Won;Kim, Young-Baeg;Hwang, Sung-Nam;Choi, Duck-Young;Suk, Jong-Sik;Chung, Dong-Kue;Min, Byung-Kook
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.11
    • /
    • pp.1456-1460
    • /
    • 2000
  • Objectives : Transpedicular screw fixation has become an important method for internal fixation in variety of disorders. However, acceleration of degeneration at the adjacent segment in any follow. The goal of this study is to review the change of motion ranges of vertebral joints adjacent to fused level in lumbar spine. Methods : This study consists of 22 patients with degenerative spinal instability. Treatment of spinal instability includes posterior fusion with transpedicular screw fixation or transpedicular screw fixation with posterior lumbar interbody fusion. The flexion-extension angle(FEA) was measured from dynamic views of lumbar spine taken both at preoperative and post operative period. Results : The FEA of upper vertebral joint adjacent(FEA-u) to a fused L4-5 level was increased(p=0.010). The FEA-u was increased in case of L5-S1 fusion(p=0.025). The change of FEA-u in case of L5-S1 fusion was greater than that in L4-5 fusion(p=0.013). Conclusion : After L4-5 fusion, there seems to be more meaningful increase in FEA of L3-4 than that of L5-S1. The reason may be due to the damage of L3-4 facet joints during the operation, the other possible explanation may be the anatomical stability of L5-S1 vertebral joint. The change of FEA-u of L5-S1 fusion is increased more than that of L4-5 fusion. Because there are compensations in the adjacent vertebrae both above and below the fused L4-5, the compensatory motion in FEA-u of L5-S1 fusion was greater than that of the L4-5 fusion.

  • PDF

The method to estimate 3-D coordinates of lower trunk muscles using orientation angles during a motion (몸통 운동시 지향각(Orientation angles)을 이용한 허리 근육의 3차원 위치 좌표 추정 기법)

  • Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.125-133
    • /
    • 2002
  • The purpose of this study was to develop a method for estimating 3-D coordinates of lower trunk muscles using orientation angles during a motion. Traditional 3-D motion analysis system with DLT technique was used to track down the locations of eight reference markers which were attached on the back of the subject. In order to estimate the orientations of individual lumbar vertebrae and musculoskeletal parameters of the lower trunk muscle, the rotation matrix of the middle trunk reference frame relative to the lower trunk reference frame was determined and the angular locations of individual lumbar vertebrae were estimated by partitioning the orientation angles (Cardan angles) that represent the relative angles between the rotations of the middle and lower trunks. When the orientation angles of individual intervertebral joints were known at a given instant, the instantaneous coordinates of the origin and insertion for all selected muscles relative to the L5 local reference frame were obtained by applying the transformation matrix to the original coordinates which were relative to a local reference frame (S1, L4, L3, L2, or L1) in a rotation sequence about the Z-, X- and Y-axes. The multiplication of transformation matrices was performed to estimate the geometry and kinematics of all selected muscles. The time histories of the 3-D coordinates of the origin and insertion of all selected muscles relative to the center of the L4-L5 motion segment were determined for each trial.

Isolation and Characterization of Reovirus in Korea (한국에 분포하는 레오바이러스의 분리 및 동정)

  • Song, Ki-Joon;Kang, Byung-Chul;Lee, Young-Eun;Baek, Luck-Ju;Lee, Yong-Ju;Song, Jin-Won
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.2
    • /
    • pp.65-74
    • /
    • 1999
  • Reovirus was found to inhabit both the respiratory and the enteric tract of human and animals. The genome of reovirus comprises 10 segments of double-stranded RNA, total size 24 kbp. Nine strains of reovirus were isolated from human and field mice in Korea. Aseptically collected sera from human and lung tissues from field mice were used for virus isolation. For serotype determination, hemagglutination inhibition test was used, and three strains were confirmed to type 2 and six strains to type 3. To determine the genomic diversity and molecular phylogeny of reoviruses isolated in Korea, part of S4 genomic segment of reovirus was enzymatically amplified and directly sequenced. In nucleotide level, Apo98-35 strain showed 15.4%, 19.3%, and 14.4% differences compared to type 1 (T1L, Lang), type 2 (T2J), and type 3 reference strains, respectively. In amino acid level, Apo98-35 strain showed 10.5%, 13.7%, and 9.5% differences compared to type 1, type 2, and type 3 reference strains, respectively. Using the maximum parsimony method based on 285 bp spaning region of the S4 genomic segment, phylogenetic analysis indicated that Apo98-35 from Korea formed different phylogenetic branch. Our data obtained by sequence and phylogenetic analyses of reoviruses are consistent with the distinct geographically dependent evolution of reoviruses in Korea.

  • PDF