• 제목/요약/키워드: L2 Signal

검색결과 858건 처리시간 0.032초

GPS L1/L2C/L5 수신기를 위한 적응 코드추적루프 설계 (Design of a Adaptive Code Tracking Loop for GPS L1/L2C/L5 Receivers)

  • 최현호;임덕원;이상욱;김지훈;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.283-288
    • /
    • 2011
  • In this paper, an adaptive signal tracking loop for a GPS L1/L2C/L5 receiver is designed. The design parameters is adjusted according to the receiver's operating conditions such as the signal strength and the receiver dynamics by using the different characteristics of GPS L1, L2C and L5 signal. Simulation results show that the tracking accuracy of the proposed signal tracking loop is better than those of L1, L2C and L5 only signal tracking loop.

Performance Comparison of Different GPS L-Band Dual-Frequency Signal Processing Technologies

  • Kim, Hyeong-Pil;Jeong, Jin-Ho;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권1호
    • /
    • pp.1-14
    • /
    • 2018
  • The Global Positioning System (GPS) provides more accurate positioning estimation performance by processing L1 and L2 signals simultaneously through dual frequency signal processing technology at the L-band rather than using only L1 signal. However, if anti-spoofing (AS) mode is run at the GPS, the precision (P) code in L2 signal is encrypted to Y code (or P(Y) code). Thus, dual frequency signal processing can be done only when the effect of P(Y) code is eliminated through the L2 signal processing technology. To do this, a codeless technique or semi-codeless technique that can acquire phase measurement information of L2 signal without information about W code should be employed. In this regard, this paper implements L2 signal processing technology where two typical codeless techniques and four typical semi-codeless techniques of previous studies are applied and compares their performances to discuss the optimal technique selection according to implementation environments and constraints.

Ultra-Fast L2-CL Code Acquisition for a Dual Band GPS Receiver

  • Kim, Binhee;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권4호
    • /
    • pp.151-160
    • /
    • 2015
  • GPS L2C signal is a recently added civil signal to L2 frequency and is constructed by time division multiplexing of civil moderate (L2-CM) and civil long (L2-CL) code signals. While the L2-CM code is 20 ms-periodic and modulates satellite navigation message, the L2-CL code is 1.5s-periodic with 767,250 chips long code sequence and carries no data. Therefore, the L2-CL code signal allows receivers to perform a very long coherent integration. However, due to the length of the L2-CL code, the acquisition of the L2-CL code signal may take too long or require too much hardware resources. In this paper, we propose a three-step ultra-fast L2-CL code acquisition (TSCLA) technique for dual band GPS receivers. In the proposed TSCLA technique, a dual band GPS receiver sequentially acquires the coarse/acquisition (C/A) code signal at L1 frequency, the L2-CM code signal, and the L2-CL code signal to minimize mean acquisition time (MAT). The theoretical performance analysis and numerous Monte Carlo simulations show the significant advantage of the proposed TSCLA technique over conventional techniques introduced in the literature.

GPS L2C 소프트웨어 수신기의 빠른 신호 획득 기법 (Fast Acquisition Method for GPS L2C Software Receiver)

  • 권금철;심덕선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1754-1755
    • /
    • 2011
  • GPS modernization program offers a new civil signal on L2 band and there are currently 9 GPS satellites transmitting L2C signal. The acquisition of L2C takes much time comparing with that of L1 signal. This paper suggests a fast acquisition method for the L2C GPS signals for software receivers.

  • PDF

Design of Software GPS L2 Civil Signal Generator (ICCAS 2003)

  • Seo, Sam-Suk;Cho, Deuk-Jae;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2632-2635
    • /
    • 2003
  • This paper designs a software signal generator for the new GPS L2 civil signal. The CM/CL code and the message structure of L2CS described in GPS ICD PPIRN-200C-007 are used in designing the signal generator. The output of the GPS signal generator is designed as the sampled IF data with the sampling frequency 5.7MHz and stored in the binary data format. By analyzing both the spectrum characteristics of the output signal and the correlation properties of the CM/CL code, the validation of the designed GPS signal generator is shown. It should be mentioned that the modeling of the GPS satellite constellation and the error sources remains for implementing the software space segment of GPS.

  • PDF

Rapid Acquisition of CM and CL Code for GPS L2C Software Receivers

  • Kwon, Keum-Cheol;Shim, Duk-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.723-730
    • /
    • 2011
  • The GPS modernization program offered a new civil signal on the L2 band, and the first modernized GPS Block IIR satellite was launched in September 2005. Currently, eight GPS Block IIRM satellites and two Block IIF satellites transmit L2C signal. The L2C signal contains two codes of CM and CL that are much longer than the L1 C/A code. Thus, the acquisition of the CM and CL codes takes more time compared with that of L1 C/A code. Under the assumption that the L2C signal is strong enough for detection, this paper suggests rapid acquisition methods for the GPS L2C signals for software receivers and compares its performance with that of other methods.

의사위성의 펄싱 방법에 대한 GPS L2C 신호획득 성 소능프분트석웨어 수신기의 L1, L2C 신호획득 성능분석 (GPS L1, L2C Signal Acquisition Performance of GPS Software Receiver with respect to Pseudolite Pulsing Scheme)

  • 권금철;양철관;심덕선;정태상;기창돈
    • 한국항행학회논문지
    • /
    • 제16권1호
    • /
    • pp.16-26
    • /
    • 2012
  • 의사위성은 우주상공의 GPS 위성과는 달리 지상이나 비행체에 설치되어 GPS 위성과 같이 거리를 측정할 수 있는 ranging 신호를 전송하는 전송기이다. 의사위성은 정확성, 가용성, 무결성을 향상시킬 수 있으나 GPS 위성 신호에 대해 신호의 포화 또는 간섭을 일으킨다. 의사위성의 근원거리 문제를 해결하기 위해 의사위성의 신호를 펄싱이 있을 때만 내보내는 기법을 주로 사용한다. 본 논문에서는 의사위성의 정적 펄싱, 이동 펄싱, 랜덤 펄싱 기법과 의사위성의 개수가 GPS 소프트웨어 수신기의 L1 및 L2C 신호획득에 미치는 영향을 분석하였다. GPS L1신호의 경우 의사위성이 1개일때는 정적펄싱에 대한 GPS 소프트웨어 수신기의 신호 획득 및 추적 성능이 가장 좋았고 2개 이상일 때는 랜덤펄싱에 대한 성능이 가장 좋았다. L2C 신호는 세가지 펄싱에 대한 성능이 비슷하게 안정적으로 나왔는데 정적펄싱에 대한 성능이 약간 좋게 나왔다. L1, L2C 모두 위사위성 3개까지는 모든 펄싱에 대해서 측위가 가능한 것으로 나왔다.

GPS Ll/L2C 상관기를 위한 빠른 신호 획득 기법 (The Fast Signal Acquisition Scheme for a GPS Ll/L2C Correlator)

  • 임덕원;문승욱;박찬식;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.765-772
    • /
    • 2006
  • The L2 Civil Signal (L2CS) will be transmitted by modernized IIR(IIR-M), IIF and all subsequent GPS satellites. It contains two codes of different length; CM code contains 10,230chips, repeats every 20milliseconds and is modulated with message data, and CL code contains 767,250chips, repeats every 1.5second Z-count and has no data modulation. And the message data is encoded for Forward Error Correction(FEC). The long code length is useful for weak signal, but it also requires very long acquisition time. Therefore, the structure of GPS Ll/L2C Correlator and the fast acquisition scheme are proposed in this paper.

Design of SDR-based Multi-Constellation Multi-Frequency GNSS Signal Acquisition/Tracking Module

  • Yoo, Won Jae;Kim, Lawoo;Lee, Yu Dam;Lee, Taek Geun;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.1-12
    • /
    • 2021
  • Due to the Global Navigation Satellite System (GNSS) modernization, the recently launched GNSS satellites transmit signals at various frequency bands of L1, L2 and L5. Considering the Korea Positioning System (KPS) signal and other GNSS augmentation signals in the future, there is a high probability of applying more complex communication techniques to the new GNSS signals. For the reason, GNSS receivers based on flexible Software Defined Radio (SDR) concept needs to be developed to evaluate various experimental communication techniques by accessing each signal processing module in detail. In this paper, we introduce a multi-constellation (GPS/Galileo/BeiDou) multi-band (L1/L2/L5) SDR by utilizing Ettus USRP N210. The signal reception module of the developed SDR includes down-conversion, analog-to-digital conversion, signal acquisition, and tracking. The down-conversion module is designed based on the super-heterodyne method fitted for MHz sampling. The signal acquisition module performs PRN code generation and FFT operation and the signal tracking module implements delay/phase/frequency locked loops only by software. In general, it is difficult to sample entire main lobe components of L5 band signals due to their higher chipping rate compared with L1 and L2 band signals. Experiment result shows that it is possible to acquire and track the under-sampled signals by the developed SDR.

L2C AGPS 수신기의 신호 획득 성능 분석 (Performance Analysis of Signal Acquisition in L2C Assisted GPS Receivers)

  • 송승헌;박지원;박지희;성태경
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.61-67
    • /
    • 2011
  • The GPS new civil signal is modulated on the L2 carrier at a frequency of 1227.6MHz. The L2C signal is composed of two multiplexed code signals, which include CM code with a 10,230 chip sequency repeating every 20ms, and CL code which has a 767,250 chip sequency repeating every 1.5 seconds. Thus, the new civil signal have much improved cross correlation properties so that the position fixing can be possible even with very weak signals. However, it requires very long acquisition time because of its long code length. This paper presents an efficient signal acquisition method for L2C AGPS receiver. Snapshot mode and coarse time assistance are assumed and total integration time is given by 1.5 sec. By SNR worksheet and computer simulation, it is proven that L2C signal can be acquired with very weak power less than -150dBm. Considering the acquisition time and the sensitivity, it is recommended that the highest power signal is acquired with CM code first to reduce TTFF. By the timing synchronization, at this time, search space of the code phase for other signals can be greatly reduced so that CL code can be used in signal acquisition to maximize sensitivity with small computation.