• Title/Summary/Keyword: L. lactis ssp. lactis 7962

Search Result 9, Processing Time 0.027 seconds

Effect of Temperature and Carbon Source on the Expression of $\beta$-Galactosidase Gene of Lactococcus lactis ssp. lactis ATCC 7962

  • Kim, Tea-Youn;Lee, Jung-Min;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon;Kim, Jeong-Hwan;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.201-205
    • /
    • 1999
  • The effects of growth temperature and a carbon source on the expression of $\beta$-galactosidase gene of Lactococcus lactis ssp. lactis ATCC 7962 (L. lactis 7962) were investigated. At $25^{\circ}C$, L. lactis 7962 had a higher $\beta$-galactosidase activity than cells grown at $30^{\circ}C$ or $37^{\circ}C$, although cells grew most quickly at $37^{\circ}C$ The highest $\beta$-galactosidase activity was observed in cells grown in M17 with lactose (l %) followed by cells grown in a galactose (1 %) medium. L. lactis 7962 exhibited the minimum $\beta$-galactosidase activity in glucose media, indicating catabolite repression. When the cellular levels of $\beta$-galactosidase mRNA were examined using slot blot hybridization, no significant differences were observed between cells grown at $25^{\circ}C$ and cells at $30^{\circ}C$ or $37^{\circ}C$ in the same media. This suggests that the quantity of $\beta$-galactosidase mRNA may not be the reason for the higher $\beta$-galactosidase activities of L. lactis 7962 at $25^{\circ}C$ The level of ccpA (Catabolite Control Protein) transcript remained almost constant during the exponential growth phase irrespective of a carbon sourse.

  • PDF

Expression of $\beta$-Galactosidase Gene of Lactococcus lactis ssp. lactis ATCC 7962 in Lactococcus lactis ssp. lactis MG1363

  • Park, Rae-Jun;Lee, Jung-Min;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon;Lee, Hyong-Joo;Kim, Jeong-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.153-159
    • /
    • 2000
  • A 4.4 kb DNA fragment encompassing lacA (galactoside acetyltransferase) and lacZ($\beta$-galactosidase) genes from Lactococus lactis ssp. lactis ATCC 7962 (L. lactis 7962) was introduced ito a Lac strain, Lactococcus lactis ssp. lactis MG1363 (L. lactis MG1363) by using a lactococcal expression vector, pMG36e and expression level of lacZ was examined. Growth rates and $\beta$-galactosidase ($\beta$-gal) activities of MG1363 cells carrying recombinant plasmid, pMLZ3, on M17 broth containing different carbon sources (1%, w/v) were examined. Contrary to the expectations, MG1363 [pMLZ3] grown on lactose showed the lowest enzyme activity (17 units) and cells grown on galactose had the highest $\beta$-gal activity (41 units). Cells grown on glucose had intermediate activity (33 units). These activities are about one tenth of the values observed in L. lactis 7962 where lacZ is present as a single-copy gene in the chromosome. When the cellular concentrations of lacZ transcript were examined using slot blot hybridization, it was found that MG1363[pMLZ3] produced sufficient amounts of transcript. These results indicate that either proteolytic degradation of $\beta$-gal or other regulatory mechanism prevent the translation or accumulation of $\beta$-gal in L. lactis MG1363 cells. In regard to regulation, the presence of the ccpA gene in L. lactis MG1363 was confirmed by Southern blot.

  • PDF

Cloning and Expression of the UDP-Galactose-4-Epimerase Gene (galE) Constituting the gal/lac Operon of Lactococcus lactis ssp. lactis ATCC7962

  • Lee, Jung-Min, Choi, Jae-Yeon;Lee, Jong-Hoon;Chang, Hae-Choon;Chung, Dae-Kyun;Kim, Jeong-Hwan;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.393-397
    • /
    • 1999
  • The gene (galE) encoding UDP-galactose-4-epimerase, operative in the galactose metabolic pathway, was cloned together with the $\beta$-galactosidase gene (lacZ) from Lactococcus lactis ssp. lactis ATCC7962 (L. lactis 7962). galE was found to have a length of 981 bps and encoded a protein with a molecular mass of 36,209 Da. The deduced amino acid sequence showed a homology with GalE proteins from several other microorganisms. A Northern analysis demonstrated that galE was constitutively expressed by its own promoter. When galactose or lactose was added into medium, the galE transcription was induced by several upstream promoters. The structure of the gal/lac operon of L. lactis 7962 was partially characterized and the gene order around galE was galT-lacA-lacZ-galE-orfX.

  • PDF

Induction of Lactococcal /beta-Galactosidase in E. coli (E. coli에서 탄수화물원에 따른 Lactococcal /beta-galactosidase의 발현)

  • 류현주;장지윤;이형주;김정환;정대균;이종훈;장해춘
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.260-265
    • /
    • 1999
  • The structural $\beta$-galactosidase gene (lacZ) from Lactococcus lactis ssp. lactis 7962 was cloned into plamid vector pKF18, which was designated as pKF-gal. Expression of the lacZ from L. lactis 7962 was found to be higher when cells were grown at 3$0^{\circ}C$ than 37$^{\circ}C$. Maximum $\beta$-galactosidase activity was obtained when E. coli/pKF-gal was cultivated for 6hr at 3$0^{\circ}C$ and for 3hr at 37$^{\circ}C$, and L. lactis 7962 was grown for 8hr at 3$0^{\circ}C$. Enzyme induction was achieved by the addition of lactose, galactose, or lactose+IPTG to growing culture. The addition of glucose had no effect on enzyme induction.

  • PDF

Construction of a Lactococcal Shuttle/Expression Vector Containing a $\beta$-Galactosidase Gene as a Screening Marker (선별마커로써 $\beta$-Galactosidase 유전자를 포함한 Lactococcus용 셔틀/발현 벡터 제조)

  • Han Tae Un;Jeong Do-Won;Cho San Ho;Lee Jong-Hoon;Chung Dae Kyun;Lee Hyong Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.241-247
    • /
    • 2005
  • A new lactococcal shuttle/expression vector for lactococci, pWgal13T, was constructed using a $\beta$-galactosi-dase gene (lacZ) from Lacfococcus lactis ssp. lactis ATCC 7962 as a screening marker. The pWgal 13T was introduced into Escherichia coli DH5a and L. lactis MG1363, and was easily detected by the formation of blue colonies on a medium containing X-gal without any false transformants. Also, the quantitatively lacZ activity of pWgal13T was measured in L. lactis ssp. cremoris MG1363, and was found to be four times higher than that of L. lactis ssp. lactis ATCC7962 grown on a medium containing glucose, which shows that the lacZ gene of pWgal13T can be used for the efficient screening of L. lactis on general media. The pWgal13T was equipped with a lactococcal replicon of pWV01 from L. lactis Wg2, the new promoter P13C from L. lactis ssp. cremoris LM0230, multiple cloning sites, and a terminator for the expression of a relevant gene. The vee-tor pWgal13T was used for the expression of the EGFP gene in E. coli and L. lactis. These results show that the lactococcal expression/shuttle vector constructed in the present study can be used for the production of foreign proteins in E. coli and L. lactis.

The Importance of Tyr-475 and Glu-506 in $\beta$-Galactosidase from L. lactis ssp.lactis 7962

  • Yang, Eun-Ju;Lee, Jung-Min;Lee, Hyong-Joo;Kim, Jeong-Hwan;Chung, Dae-Kyun;Lee, Jong-Hoon;Chang, Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.134-138
    • /
    • 2003
  • The secondary and tertiary structures of ${\beta}$-galactosidase from L. lactis ssp. lactis 7962 were designed using Nnpredict and Sybyl version 6.3. By using site-directed mutagenesis, the mutated enzymes, Tyr-475-phe and Glu-506-Asp, were generated based on the structural modeling of L. lactis ssp. lactis 7962. The enzymes Tyr.-475-Phe and Glu-506-Asp had <$1\%$ of the activity of the native enzyme with ONPG as substrate. The $V_{max}$ values of the mutated enzymes were greatly reduced (1,800~40,000-1314) compared with the value for the native ${\beta}$-galactosidase. However, the $K_m$ values of Tyr-475-Phe and Glu-506-Asp with ONPG, PNPG, PNPF, and PNPA were not significantly different from those of the native enzyme. The results obtained support the suggestion that Tyr-475 and Glu-506 constitute very important parts of the catalytic machinery of the ${\beta}$-galactosidase.

Characteristics of the Nisin-Resistant Transformants of Lactococcus lactis subsp. lactis LM0230

  • Kang, Hyeong-Joon;Kim, Jeong-Hwan;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.217-223
    • /
    • 1993
  • To investigate the nature and location of the nisin-resistance determinant of Lactococcus lactis subsp. lactis 7962 (L. lactis 7962), a total plasmid DNA prepared from L. lactis 7962, a nisin producer, was used to transform L. lactis subsp. lactis LM0230, a plasmid-free and nisin-sensitive strain, by protoplast mediated transformation procedures. All of the nisin-resistant transformants acquired the ability to utilize sucrose at the same time, confirming the close linkage between these two determinants in L. lactis 7962. The plasmid DNA profiles of a few selected nisin-resistant transformants were examined by agarose gel electrophoresis. No common plasmid was found among the transformants and some small plasmids previously not present in L. lactis 7962 were detected. These transformants were named as L. lactis KL1, KL2, KL3, KL4, or KL5, respectively based on their plasmid profiles. Growth curves of all transformants were similar to that of L. lactis LM0230, but different from that of L. lactis 7962. L. lactis KL5 showed the highest level of resistance to nisin, growing up to 1, 200 IU nisin/ml after 40 hr incubation. Some nisin-sensitive derivatives of KL1 or KL2 were obtained by plasmid curing experiments. The plasmid DNA profiles of the nisin-sensitive KL1 derivatives were apparently the same as that of the KL1. All of the nisin-sensitive KL2 derivatives were plasmid-free, but a nisin-resistant strain with no apparent plasmid was also obtained. These results indicate that the nisin-resistance of the $Nis^r$ transformants is presumably mediated by the chromosomally located gene(s) rather than plasmid-encoded gene(s).

  • PDF

Substitutions for Cys-472 and His-509 at the Active Site of $\beta$-Galactosidase from Lactococcus lactis ssp. lactis 7962 Cause Large Decreases in Enzyme Activity

  • Chung Hye-Young;Yang Eun-Ju;Chang Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1325-1329
    • /
    • 2006
  • Structural modeling of $\beta$-galactosidase from L. lactis ssp. lactis 7962 has shown that the residues Cys-472 and His-509 are located in the wall of the active-site cavity. To examine the functions of Cys-472 and His-509, we generated five site-specific mutants: Cys-472-Ser, Cys-472-Thr, Cys-472-Met, His-509-Asn, and His-509-Phe. $\beta$-Galactosidase substituted at Cys-472 with Met or His-509 with Phe had <3% of the activity of the native enzyme when assayed using ONPG as substrate. The other mutants Cys-472-Ser, Cys-472-Thr, and His-509-Asn had ca. 10-15% of the native enzyme activity. The V$_max$ values of the five mutated enzymes were lower (60-7,000-fold) than that of native enzyme. These results show that the catalytic ability of $\beta$-galactosidase is significantly affected by mutations at Cys-472 or His-509.

Expression of the Galactokinase Gene (gaIK) from Lactococcus lactis asp. lactis ATCC7962 in Escherichia coil

  • Lee, Hyong-Joo;Lee, Jung-Min;Park, Jae-Yeon;Lee, Jong-Hoon;Kim, Jeong-Hwon;Chang, Hea-Choon;Chung, Dae-Kyun;Kim, Somi-Cho
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.156-160
    • /
    • 2002
  • The whole gal/lae operon genes of Lactococcus lactis ssp. lactis 7962 were reported as follows: galA-galM-galK-galT-lacA -lacZ-galE. The galK gene encoding a galactokinase involved in one of the Leloir pathways for galactose metabolism was found to be 1,197 bp in length and encodes a protein of 43,822 Da calculated molecular mass. The deduced amino acid sequence showed over 50% homology with GaIK proteins from several other lactic acid bacteria. The galK gene was expressed in E. coli and the product was identified as a 43 kDa protein which corresponds to the estimated size from the DNA sequence. The galactokinase activity of recombinant 5. coli was about 8 times greater against that of the host strain and more than 3 times higher than the induced L. lactis 7962.