• Title/Summary/Keyword: L., biodegradation

Search Result 225, Processing Time 0.024 seconds

Biodegradation of Trichloroethylene by Phenol-degrading Pseudomonas putida

  • Shin, Hyun-Jae;Lee, Moo-Yeal;Yang, Ji-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.185-187
    • /
    • 1998
  • Pseudomonas putida KCTC 2401 degrades 1,1, 2-trichloroethylene (TCE) using phenol as a cosubstrate. The initial TCE degradation rate decreased with the initial TCE concentration up to 20mg/l of TCE at $30^{\circ}C$ and pH 6.5. The initial degradation rate and total removal efficiency increased with inoculum size. The strain also degraded dichloroacetic acid, which was supposed to be a degradation by-product. Phenol monooxygenase apparently participates in the TCE degradation mechanism.

  • PDF

Biodegradation of Bunker-A Oil by Acinetobacter sp. EL-081K

  • Kim, Hee-Goo;Park, Geun-Tae;Son, Hong-Joo;Lee, Sang-Joon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.227-230
    • /
    • 2000
  • Bunker-A oil-degrading microorganisms were isolated from a marine environment using an enrichment culture technique. The isolated strain EL-081K was identified as the genus Acinetobacter based on the results of morphological, culture, and biochemical tests. The optimal temperature and initial pH for bunker-A oil degradation were $25^{\circ}C$ and 7.0, respectively, including aeration. The optimal medium composition for the degradation of bunker-A oil by Acinetobacter sp. EL_O81K was 10 ml/l bunker-A oil as the carbon source and 0.1% (NH$_4$)$_2$SO$_4$as the nitrogen source. Under the above conditions, the biodegradability of bunker-A oil was 38% after 96 hours of incubation. The addition of detergent did not increase the bunker-A oil degradation.

  • PDF

Decolorization of Azo Dyes by Aspergillus sojae B-10

  • Ryu, Beung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.215-219
    • /
    • 1992
  • Biodegradation of azo dyes such as Amaranth, Sudan III and Congo-Red by Aspergillus sojae B-10 was demonstrated using Aspergillus sojae B-10. Aspergillus sojae B-10 showed the greatest decolorization ability when it was cultivated in a nitrogen-limited medium containing, azo dyes(10 mg/l), 2.0% glucose, 0.06% sodium nitrate, 0.1% $KH_PO_4$, 0.5% MgSO_4$$7H_2O$ at pH 5.0 and $37^\circ{C}$ for 5 days. Under optimal conditions, Amaranth started being decolorized within 24 hr and was almost complete after decolorization of 4 days incubation. Sudan III was completely decolorized after a cultivation of 5 days. However, Congo-Red was not completely decolorized until 5 days of cultivation.

  • PDF

Biodegradation Characteristics of food waste on various collection systems (수거 형태에 따른 음식물류 폐기물의 혐기성 분해 특성)

  • Choi, Jae-Min;Kim, Jung-Kwang;Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • This study was conducted to evaluate the biodegradation characteristics of food waste on various collection systems using anaerobic batch test. The ultimate methane production from food waste in standard plastic garbage bags (sample A) was $285.6mL\;CH_4/g$ volatile solids (VS) which is the lowest, and reaction constant was $0.215d^{-1}$. The ultimate methane production from food waste in waste vessel based on RFID (sample D) was $493.4mL\;CH_4/g$ VS which is the highest, and reaction constant was $0.162d^{-1}$. The determinants of rate limiting step on all samples showed positive numbers, and the methane production step was found a rate limiting step.

Toxicity Estimation of Nonionic Surfactants and Their Effect on the Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) (비이온계 계면활성제의 독성 평가 및 Polycyclic Aromatic Hydrocarbons(PAHs) 생분해에 미치는 영향)

  • Park, Jong-Sup;Kim, In S.;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2107-2113
    • /
    • 2000
  • Toxicity estimation of three nonionic surfactants (Brij 30, Tween 80, Triton X-lOO) and their effect on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the aqueous phase and soil slurry phase were investigated. Brij 30 was found to be the most biodegradable among the surfactants tested, and showed no substrate inhibition up to a concentration of 1.5 g/L. It was definitely utilized as a carbon source by the microorganisms. Naphthalene and phenanthrene in the aqueous phase were completely degraded by phenanthrene-acclimated cultures within 60 hours, but a substantial amount of naphthalene was lost due to the volatilization. The limiting step in the soil slurry bioremediation was bioavailablity by the microorganisms in the sand slurry and mass transfer from a solid to aqueous phase in the clay slurry. TOC analysis revealed that most of substrates including surfactant in the reactor were degraded. pH transition indicated that phenanthrene was metabolized into intermediates containing acid function.

  • PDF

Biodegradation of Aniline by Pseudomonas Rhodesiae isolated from River Water (강물에서 분리한 Pseudomonas rhodesiae의 아닐린 분해)

  • Kim, Hyun-Ju;Kim, Jin-Cheol;Kim, Heung-Tae;Choi, Gyung-Ja;Choi, Do-Il;Kim, Hong-Gi;Cho, Kwang-Yun
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.74-78
    • /
    • 2001
  • Two Bacterial strains 1-C and 51-C capable of utilizing aniline as a sole source of carbon and energy were isolated from river waters. Both strains were identified as Pseudomonas rhodesiae based on their physiological and biochemical characteristics and 16S rRNA gene sequence. The strains were able to grow on the mineral salt media containing aniline at concentrations up to 6,000 ${\mu}g/mL$. Pseudomonas rhodesiae 51-C completely degraded aniline in a mineral salt medium containing 300 ${\mu}g/mL$ of aniline as a sole carbon and energy source within 16 hours. The optimum pH and temperature for its growth and aniline degradation were 7.0 and $30^{\circ}C{\sim}35^{\circ}C$, respectively. This is the first report of aniline degradation by P. rhodesiae strains.

  • PDF

Microcosm Study on BTEX and MTBE (Methyl Tert-Butyl Ether) Biodegradation under Aerobic-Anaerobic Conditions (호기/혐기성 조건에서의 BTEX 및 MTBE 동시 분해특성)

  • Oh, Inseok;Lee, Changyeol;Lee, Jongin;Kim, Jitae;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.39-46
    • /
    • 2014
  • The objectives of this study were to determine biodegradation and characteristics of BTEX and MTBE under aerovic-anaerobic conditions and evaluate the potential of natural attenuation method in denitrifying condition.. In the single-substrate experiments, all of the BTEX compounds were degraded under all the conditions. but, lower degradation of benzene and p-xylene were observed under aerobic condition due to the lack of oxygen initially supplied. In the mixed-substrate experiments, BTEX degradation was delayed compared to that in the single-substrate experiments due to a competition of the substrates. Biodegradation of MTBE was observed only under denitrifying conditions and we expected that MTBE mineralized to $CO_2$ without the accumulation of TBA. We also conducted to determine the effect of initial nitrate concentration on BTEX and MTBE degradation. At low nitrate concentration (<50 mg/L), BTEX degradations were limited by the lack of electron acceptor and BTEX degradation was inhibited at high nitrate concentration (>200 mg/L). The results in this study indicated that biotransformation could be applied to the gasoline-contaminated region under aerovic-anaerobic.

The Effects of Phenol on Biokinetic Coefficient of Multiple Phenol Derivatives of 2,4-Dichlorophenol and 2,4-Dinitrophenol in Activated Sludge Process (활성슬러지공정에서 페놀이 2,4-디클로로페놀과 2,4-디니트로페놀을 함유한 복합페놀폐수의 미생물분해계수에 미치는 영향)

  • Lim, Gye-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.349-353
    • /
    • 1999
  • A study was carried out to see the effects of phenol on the biological degradation of a wastewater containing 2,4-dichlorophenol and 2,4-dinitrophenol and the biodegradation kinetic coefficients of Eckenfelder's modified model for the activated sludge process. The system containing base mix (BM) which was formulated with essential energy sources and nutrients was run down and washed out when 2,4-dichlorophenol and 2,4-dinitrophenol was introduced into the base mix unit without acclimation to phenol. Whereas for the system acclimated to phenol, the treatment efficiency was 91.9% in terms of $BOD_5$ and treatability for each chemical of phenol, 2,4-dichlorophenol, and 2,4-dinitrophenol was 99.8%, 43.3% and 62.5% based on concentration, respectively. Additional BM was added into the combined unit containing phenol, 2,4-dichlorophenol, 2,4-dinitrophenol so that the better treatment efficiency was achieved for each compound. The biokinetic coefficient of Eckenfelder's modified model without phenol acclimation was not estimated because the system did not reach the steady state. Thc coefficient for the phenol acclimation was 12.44 /day, however it was changed as 46.91 /day in addition of both of phenol acclimation and 47 mg/l of BM. The results presented above could be useful for the process design and further study in the field of biodegradation of benzene derivatives.

  • PDF

A Study on the Anaerobic Treatment of the Phenol Wastewater with the Sludge Blanket-Packed Bed Reactor (슬러지-고정상 반응기에서 페놀폐수의 혐기성 처리에 관한 연구)

  • 안재동;박동일;김재우;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.72-80
    • /
    • 1996
  • This study was carried to investigate the biodegradability of phenol wastewater in the sluge blanket-packed bed reactor(SBPBR). The reactor consisted of two regions. The lower region was a sludge blanket of 0.5 m height and the upper region was a packed-bed. The phenol and COD concentration of the effluent, the gas production and the composition of gas were measured to determine the performance of the anaerobic wastewater treatment system as the phenol concentration of the influent was increased from 600 to 1800 mg/l. Stable biodegradation of phenol wastewater could be achieved with the anaerobic treatment system from 600 to 1200 mg/l of the influent phenol concentration. But the SBPBR system was getting more serious at 1800 mg/l of influent phenol concentration. At the steady state of the influent phenol concentration of 600-1200 mg/l, the treatment performance showed the phenol removal efficiency of 94.5~96.3%, the COD removal efficiency of 93.3~96% and the gas production of 4.94~9.64 l/day.

  • PDF

Poly(L-leucine)/poly(ethylene oxide)/poly(L-leucine) triblock copolymers as wound dressing

  • Jo, Jong-Su;Kim, Hyeon-Jeong;Lee, Hyeon-Cheol;Kim, Seong-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.327-330
    • /
    • 1996
  • Poly(L-leucine)(PLL)/poly(ethylene oxide)(PEO)/poly (L-leucine)(PLL) block copolymers were synthsized by polymerization of L-leucine N-carboxyanhydride with diamine-terminated PEO for possibility of wound dressing which may have several advantages such as 1) increase of solubility, 2) control of biodegradation, 3) absorption of body fluid. 4) non-immunogenic effect than PLL homopolymer wound dressing aleady commercialized. Water content increased with an increase of PEO content in the block copolymer due to the hydrophilicity of PEO. Release of silver sulfadiazine(AgSD) from AgSD loaded wound dressing increased with an increase of PEO content in the block copolymer. It was found that the number of Pseudomonas aeruginosa decrease with an increase of PEO content due to the fast release of antibacterial agents with an increase of PEO content in the block copolymer.

  • PDF