DOI QR코드

DOI QR Code

Microcosm Study on BTEX and MTBE (Methyl Tert-Butyl Ether) Biodegradation under Aerobic-Anaerobic Conditions

호기/혐기성 조건에서의 BTEX 및 MTBE 동시 분해특성

  • Received : 2014.01.14
  • Accepted : 2014.04.11
  • Published : 2014.05.01

Abstract

The objectives of this study were to determine biodegradation and characteristics of BTEX and MTBE under aerovic-anaerobic conditions and evaluate the potential of natural attenuation method in denitrifying condition.. In the single-substrate experiments, all of the BTEX compounds were degraded under all the conditions. but, lower degradation of benzene and p-xylene were observed under aerobic condition due to the lack of oxygen initially supplied. In the mixed-substrate experiments, BTEX degradation was delayed compared to that in the single-substrate experiments due to a competition of the substrates. Biodegradation of MTBE was observed only under denitrifying conditions and we expected that MTBE mineralized to $CO_2$ without the accumulation of TBA. We also conducted to determine the effect of initial nitrate concentration on BTEX and MTBE degradation. At low nitrate concentration (<50 mg/L), BTEX degradations were limited by the lack of electron acceptor and BTEX degradation was inhibited at high nitrate concentration (>200 mg/L). The results in this study indicated that biotransformation could be applied to the gasoline-contaminated region under aerovic-anaerobic.

본 연구에서는 다양한 호기/혐기조건에서 유류오염물질인 및 MTBE의 생분해 특성을 비교하고, 특히 탈질 조건에서 질산염 영향을 조사하여 유류오염지역의 혐기적 자연정화방법의 적용 가능성을 평가하고자 한다. 단일기질 및 혼합기질 분해실험 결과, BTEX는 3가지 실험조건에서 차이는 있었으나 모두 분해가 일어났다. 그러나 benzene과 p-xylene은 호기성 조건에서 초기 공급된 용존 산소의 부족으로 인하여 분해가 지연되는 것으로 나타났다. 또한 혼합기질에서는 단일기질에 비해 BTEX 분해가 기질 경쟁관계로 인해 다소 지연되는 경향이 관찰되었다. MTBE는 탈질 조건에서만 생분해가 관찰되었으나, TBA 축적 없이 $CO_2$로 무기화되는 것으로 추정된다. 또한 BTEX 및 MTBE 분해에 대한 질산염 농도의 영향 실험 결과, 저농도(>50 mg/L)에서 BTEX 분해는 제한되었으며, 고농도 질산염(<200 mg/L) 조건하에서는 BTEX 분해가 억제되는 현상이 관찰되었다. 본 연구에서 도출된 결과는 유류오염지역의 경우 호기/혐기성 조건에서 자연 생분해를 유도할 수 있을 것으로 예상된다.

Keywords

References

  1. Alvarez, P. J. and Vogel, T. M. (1993), Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate, Water Research, Vol. 27, No. 4, pp. 685-691. https://doi.org/10.1016/0043-1354(93)90178-K
  2. Anthony, J. W. (1999), Methodology to evaluate natural attenuation of methyl tertiary-butyl ether In : Natural attenuation of chlorinated solvents, hydrocarbons, and other organic compounds, Battelle, Columbus, Ohio, pp. 121-133.
  3. Borden, R. C., Daniel, R. A., LeBrun I. V. and Davis, C. W. (1997), Intrinsic Biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer, Water Resources Research, Vol. 33, No. 5, pp. 1105-1115. https://doi.org/10.1029/97WR00014
  4. Bradley, P. M., Chapelle, F. H. and Landmeyer, J. E. (2001), Methyl t-butyl ether mineralization in surface-water sediment microcosms under denitrifying conditions, Appled and Environmental Microbiology, Vol. 67, No. 4, pp. 1975-1978. https://doi.org/10.1128/AEM.67.4.1975-1978.2001
  5. Deeb, R. A., Scow, K. M. and Alvarez-Cohen, L. (2000), Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions, Biodegradation, Vol. 11, No. 2-3 pp. 171-186. https://doi.org/10.1023/A:1011113320414
  6. Finneran, K. T. and Lovley, D. R. (2001), Anaerobic degradation of Methyl Tert-Butyl Ether (MTBE) and Tert-Butyl Alcohol (TBA), Environmental Science & technology, Vol. 35, No. 9, pp. 1785-1790. https://doi.org/10.1021/es001596t
  7. Gusmao, V. R., Chinalia, F. A., Sakamoto, I. K. and Varesche, M. B. (2007), Performance of a reactor containing denitrifying immobilized biomass in removing ethanol and aromatic hydrocarbons (BTEX) in a short operating period, J. of Hazardous Materials, Vol. 139, No. 2, pp. 301-309. https://doi.org/10.1016/j.jhazmat.2006.06.028
  8. Hutchins S. R., Sewell, G. W., Kovacs, D. W. and Smith, G. A. (1991), Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions, Environmental Science & technology, Vol. 25, No. 1, pp. 68-76. https://doi.org/10.1021/es00013a005
  9. Ki, M. G., Koh, D. C., Yoon, H. S. and Kim, H. S. (2013) Characterization of nitrate contamination and hydrogeochemistry of groundwater in an agricultural of northeastern Hongseong, Journal of Soil & Groundwater Env., Vol. 18, No. 3, pp. 33-51. https://doi.org/10.7857/JSGE.2013.18.3.033
  10. Korea Institute of Policy Evaluations (2002), The seminar of risk and management necessity to the fuel additive MTBE, pp. 24-26.
  11. La, H. J. (1999), The removal of gasoline by contaminated soil microbial, Master's thesis, Kyonggi University. pp. 22-26 (in Korean).
  12. Landmeyer, J. E., Chapelle, F. H., Bradley, P. M., Pankow, J. F., Church, C. D. and Tratnek, P. G. (1998), Fate of MTBE relative to benzene in a gasoline-contaminated aquifer, Groundwater Monitoring & Remediation, Vol. 18, Issues 4, pp. 93-102.
  13. Madeline E. S. and Bahr, J. M. (1999), Spatial electron acceptor variability: implications for assessing bioremediation potential, Bioremediation Journal, Vol. 3, No. 4, pp. 363-378. https://doi.org/10.1080/10889869991219442
  14. Mormile, M. R., Liu, S. and Suflita, J. M. (1994), Anaerobic biodegradation of gasoline oxygenates: extrapolation of information to multiple sites and redox conditions, Environmental Science & Technology, Vol. 28, No. 9, pp. 1727-1732. https://doi.org/10.1021/es00058a026
  15. Ribeio, R., Nardi, I. R., Fernandes, B. S., Foresti, E. and Zaiat, M. (2013), BTEX removal in a horizontal-flow anaerobic immobilized biomass reactor under denitrifying conditions, Biodegradation, Vol. 24, No. 2, pp. 269-278. https://doi.org/10.1007/s10532-012-9585-2
  16. U.S. Environmental Protection Agency (1997), Chemical summary for methyl tert-butyl ether, EPA-822-F-97-009, Vol. 79, pp. 1-3.
  17. Waul, C., Arvin, E. and Schmidt, J. E. (2009), Long term studies on the anaerobic biodegradability of MTBE other gasoline ethers, Journal of Hazardous Materials, Vol. 163, No. 1, pp. 427-432. https://doi.org/10.1016/j.jhazmat.2008.06.113
  18. Yeh, C. K. and Novak, J. T. (1994), Anaerobic biodegradation of gasoline oxygenates in soils, Water Environment Research, Vol. 66, No. 5, pp. 744-752. https://doi.org/10.2175/WER.66.5.11