• Title/Summary/Keyword: L., biodegradation

Search Result 225, Processing Time 0.023 seconds

The Importance of Weathered Crude Oil as a Source of Hydrocarbonoclastic Microorganisms in Contaminated Seawater

  • Sheppard, Petra J.;Simons, Keryn L.;Kadali, Krishna K.;Patil, Sayali S.;Ball, Andrew S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1185-1192
    • /
    • 2012
  • This study investigated the hydrocarbonoclastic microbial community present on weathered crude oil and their ability to degrade weathered oil in seawater obtained from the Gulf St. Vincent (SA, Australia). Examination of the native seawater communities capable of utilizing hydrocarbon as the sole carbon source identified a maximum recovery of just $6.6{\times}10^1\;CFU/ml$, with these values dramatically increased in the weathered oil, reaching $4.1{\times}10^4\;CFU/ml$. The weathered oil (dominated by > $C_{30}$ fractions; $750,000{\pm}150,000mg/l$) was subject to an 8 week laboratory-based degradation microcosm study. By day 56, the natural inoculums degraded the soluble hydrocarbons (initial concentrations $3,400{\pm}700mg/l$ and $1,700{\pm}340mg/l$ for the control and seawater, respectively) to below detectable levels, and biodegradation of the residual oil reached 62% ($254,000{\pm}40,000mg/l$) and 66% ($285,000{\pm}45,000mg/l$) in the control and seawater sources, respectively. In addition, the residual oil gas chromatogram profiles changed with the presence of short and intermediate hydrocarbon chains. 16S rDNA DGGE sequence analysis revealed species affiliated with the genera Roseobacter, Alteromonas, Yeosuana aromativorans, and Pseudomonas, renowned oil-degrading organisms previously thought to be associated with the environment where the oil contaminated rather than also being present in the contaminating oil. This study highlights the importance of microbiological techniques for isolation and characterisation, coupled with molecular techniques for identification, in understanding the role and function of native oil communities.

Biodegradation of Cutting Oil by Pseudomonas aeruginosa KS47 (Pseudomonas aeruginosa KS47에 의한 절삭유의 생물학적 분해)

  • Kim, Lan-Hee;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2008
  • Cutting oils are emulsionable fluids widely used in metal working processes. Their composition is mineral oil, water, and additives (fatty acids, surfactants, biocides, etc.) generating a toxic waste after a long use. Cutting oils also affect colour, taste and odour of water, making it undesirable for domestic and industrial uses. In these days, conventional treatment methods as evaporation, membrane separation or chemical separation have major disadvantages since they generate a concentrated stream that is more harmful than the original waste. In this study, our purpose is to reduce cutting oils by using biological treatment. Eighty one strains were isolated from cutting waste oil of industrial waste water sludge under aerobic conditions. Among these strains, KS47, which removed 90.4% cutting oil in 48 hr, was obtained by screening test under aerobic conditions(pH 7, $28^{\circ}C$). KS47 was identified as Pseudomonas aeruginosa according to morphological, physiological and biochemical properties, 16S rDNA sequence, and fatty acid analysis. P. aeruginosa KS47 could utilize cutting oil as carbon source. In batch test, we obtained optimal degradation conditions(1.5 g/L cell concentration, pH 7, and temperature $30^{\circ}C$). Under the optimal conditions, 1,060 mg/L cutting oil was removed 83.7% (74.1 mg/L/hr).

Biodegradation Characteristics of Swine and Cattle Using Anaerobic Batch Tests (혐기성 회분식 실험을 통한 돈 및 우육의 분해 특성)

  • Kim, Jung-Kwang;Choi, Jae-Min;Kim, Jae-Yoon;Park, Joon-Kyu;Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • This study was conducted to investigate the biodegradation characteristics of swine and cattle using anaerobic batch tests. The results showed that the maximum methane production rate($MPR_{max}$) and acclimation time(AT) of swine were 46.7 mL $CH_4/g$ VS.d and 17.2 d, respectively. The $MPR_{max}$ and AT of cattle were 56.5% and 24.0% lower than those of swine. The characteristics of anaerobic biodegradation varied with livestock species but $MPR_{max}$ and AT increased linearly with the content of lipid. The $MPR_{max}$ and AT of cattle with content of lipid were more sensitive than those of swine.

Effective Biodegradation of Polyaromatic Hydrocarbons Through Pretreatment Using $TiO_2$-Coated Bamboo Activated Carbon and UV ($TiO_2$로 코팅된 대나무숯 및 UV의 전처리를 통한 다환방향족탄화수소의 효율적 생분해)

  • Ekpeghere, Kalu I.;Koo, Jin-Heui;Kim, Jong-Hyang;Lee, Byeong-Woo;Yi, Sam-Nyung;Kim, Yun-Hae;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • $TiO_2$-coated bamboo activated carbon has been prepared and utilized under UV irradiation as a pretreatment method for an effective biodegradation of the recalcitrant polyaromatic hydrocarbons (PAHs). The anatase $TiO_2$ was successfully coated on the bamboo activated carbon (AC) and it showed the highest photoactivity against methylene blue. In the absence of the PAHs-degrading bacteria PAHs having low molecular weight (i.e., naphthalene, acenaphthylene, acenaphthene, and fluorene) were degraded by 9.8, 76.2, 74.1, and 40.5%, respectively. Higher molecular weight PAHs, however, maintained high residual concentrations of PAHs (400-1,000 ${\mu}g$/L) after the same treatment. On the other hand, the overall concentrations of PAHs became lower than 340 ${\mu}g$/L when the pretreated PAHs were subjected to biodegradation by a PAH-degrading consortium for a week. Herein, phenanthrene, anthracene, fluoranthene, and pyrene were removed by 29.3, 61.4, 27.0, and 44.3%, respectively, indicating the facilitated potential biodegradation of PAHs. Activated carbon coated with $TiO_2$ appeared to inhibit growth of PAH degraders on the surface of AC, indicating planktonic degraders were dominantly involved in the PAH biodegradation in presence of the $TiO_2$-coated bamboo AC. It was proposed that an effective remediation technology for the recalcitrant PAHs could be developed when an optimum pretreatment process is further established.

A Study on the Biodegradation of Synthetic Detergents of Major Streams in Seoul (서울시내 주요지천수중 합성세제의 분해도에 관한 연구)

  • 이병인
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.2
    • /
    • pp.95-102
    • /
    • 1990
  • Since the production of synthetic detergents in 1966, the demand of detergents increased rapidly during the past in Korea. Its production which was solely for donlestic consumption leaped from 402 tons in 1966 to 259387 tons in 1989. Practically all of these products were the anionic detergents primarily sodium salts of Alkyl Benzene Sulfonate(ABS). ABS persists for long periods in stream because of its resistance to triodegradation. Therefore synthetic detergents have been considered major contributors to water pollution. The detergents give a raise to be noted is foaming at sewage treatment plant and the drinking water contaminated by detergents have often been accompanying taste and odor. So the biodegradable Linear Alkyl benzene Sulfonate(LAS) has been adapted as the substituents for the Alkyl Benzene Sulfonate (ABS) since the 1980. However, the Inassive bubbles stemmed from use of synthetic detergents in the sewage treatment plant and the branch of tile Han River had been reported. Therefore, this investigation less undertaken so as to know the pollution of detergents in domestic sewage and the receiving river, and determine the biodegradation of synthetic detergents since ABS has been replaced by LAS in 1980. The study results on the pollution and biodegradation of synthetic detergents were as follows . 1. The major streams in Seoul were contaminated by synthetic detergents. The concentration of detergents were 2.48 mg/l of Anyangchon. 2. The biodegradation were determined by spontaneous settling and aeration. Since the LAS was substitute for ABS in 1980, detergents was more easy to biodegradable. The reduction ratio of Tanchon, Chungranchon, and Anyangchon were 15% , 11% and 16% by the settling and 76%, 77% and 82% by aerations for 5 days.

  • PDF

Substrate Utilization Patterns During BTEX Biodegradation by an o-Xylene-Degrading Bacterium Ralstonia sp. PHS1

  • Lee, Sung-Kuk;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.909-915
    • /
    • 2002
  • The biodegradation of BTEX components (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene) individually and in mixtures was investigated using the o-xylene-degrading thermo-tolerant bacterium Ralsronia sp. strain PHS1 , which utilizes benzene, toluene, ethylbenzene, or o-xylene as its sole carbon source. The results showed that as a single substrate for growth, benzene was superior to both toluene and ethylbenzene. While growth inhibition was severe at higher o-xylene concentrations, no inhibition was observed (up to 100 mg $l^-1$) with ethylbenzene. In mixtures of BTEX compounds, the PHS1 culture was shown to degrade all six BTEX components and the degradation rates were in the order of benzene, toluene, o-xylene, ethylbenzene, and m- and p-xylene. m-Xylene and p-xylene were found to be co-metabolized by this microorganism in the presence of the growth-supporting BTEX compounds. In binary mixtures containing the growth substrates (benzene, toluene, ethylbenzene. and o-xylene), PHS1 degraded each BTEX compound faster when it was alone than when it was a component of a BTEX mixture, although the degree of inhibition varied according to the substrates in the mixtures. p-Xylene was shown to be the most potent inhibitor of BTEX biodegradation in binary mixtures. On the other hand, the degradation rates of the non-growth substrates (m-xylene and p-xylene) were significantly enhanced by the addition of growth substrates. The substrate utilization patterns between PHS1 and other microorganisms were also examined.

Biodegradation of Volatile Aromatic Compounds by Rhodococcus puridinovorans PYJ-1 isolated from a Biofilter (바이오 필터에서 순수분리된 Rhodococcus pyridinovorans PYJ-1에 의한 방향족 화합물의 분해특성)

  • 조대원;윤인길;박창호
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.30-34
    • /
    • 2003
  • A bacterial strain isolated from a compost-packed biofilter after 100 days of operation was identified as Rhodococcus pyridinovorans PYJ-1, with a similarity of 99%. This strain removed benzene, toluene and m-xylene (BTX) at 2~30 mg/L within 6~20 hrs in batch cultures. Optimum pH and temperature for BTX removal were pH 7 and $32^{\circ}C$. This strain also removed a mixture of BTX at component concentrations of 2~5 mg/L.

The Biodegradation of Mixtures of Benzene,Phenol,and Toluene by Mixed and Monoculture of Bacteria (단일배양 및 혼합배양에 의한 Benzene, Phenol 및 Toluene 혼합물의 생분해)

  • Lee, Chang-Ho;Oh, Hee-Mock;Kwon, Tae-Jong;Kwon, Gi-Seok;Kim, Seong-Bin;Kho, Yung-Hee;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.685-691
    • /
    • 1994
  • The biodegradation of aromatic compounds by mixed and monoculture was investigated in an artificial wastewater containing 500 mg/l of benzene(B), phenol(P), and toluene(T) in various combinations. None of three strains utilized P-xylene(X) as a carbon source, but they grew well on p-xylene in mixtures with benzene and toluene. In the mixed culture on mixed substrate, the length of lag phase was different depending on the nature of mixture. Cell growths of Flavobac- terium sp. BEN2 and Acinetobacter sp. GEM63 were inhibited in the presence of a 500 mg/l of phenol. When the mixed culture of three strains was cultured in a bench-scale reactor containing artificial wastewater, each of benzene, phenol, and toluene was not detected at 30 hrs, 50 hrs, and 12 hrs after incubation in the treatment. The removal rates of COD$_{t}$(total COD) and COD$_{s}$,(soluble COD) of upper phase after centrifugation during early 50 hrs were ca. 80% and ca. 93.8%, respectively.

  • PDF

Biodegradation of Ethylene in an Activated Carbon Biofilter

  • Kim, Jong-O;Chung, Il-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.79-84
    • /
    • 2002
  • The objective of this study was to investigate the biodegradation of ethylene in an activated carbon biofilter inoculated with immobilized microbial consortium. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. Its was found that carbon dioxide was produced at a rate of 87 mg day$\^$-1/, which corresponded to a volume of 0.05 L day$\^$-1/. During operation with an inlet ethylene of 290 ppm, the maximum elimination capacity of the biofilter was 34 g of C$_2$H$_4$m$\^$-3/ day$\^$-1/. The biofilter could provide an attractive treatment technology for removing ethylene, an extremely volatile and slowly adsorbed compound.

Influence of Control Variables on the Aerobic Biodegradation Performance in Bin Composting System (회분식 퇴비화 시스템에서 제어변수가 호기성 분해성능에 미치는 영향)

  • 박금주;홍지형
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.359-364
    • /
    • 1999
  • A theoretical model was developed to evaluate the influence of control variables on the composting performance in a bin composting system. The model was verified using pilot scale composting system. Simulation of the composting temperature according to air flow rate and composting bin size was conducted using the mathematical model. High composting temperature above 55$^{\circ}C$ needed to kill a pathogen was maintained for longer periods as the air flow rate was lower and the bin size was larger. Optimum air flow rate was 0.77L/min/kg.DM for the experimental pilot scale bin system. The size of composting bin should be large enough to maintain the higher composting temperature for required periods.

  • PDF