• Title/Summary/Keyword: L-sorbose

Search Result 21, Processing Time 0.026 seconds

고정화균체 반응기에서 L-Sorbose 연속생산

  • 신혜원;신봉수;신철수
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.68-74
    • /
    • 1997
  • The conversion of D-sorbitol to L-sorbose by Gluconobater suboxydans was analyzed, and continuous production of L-sorbose was carried out in immobilized cell reactors. L-Sorbose production by high densities of resting cells was more effective than by conventional batch fermentations. Sorbitol dehydrogenase, an enzyme converting D-sorbitol to L-sorbose, did not suffer from substrate inhibition, but from product inhibition. When L-sorbose production was carried out with Ca-alginate-immobilized cells, about 60 g/l of L-sorbose was obtained. On the other hand, when the corn steep liquor (CSL) concentration of medium was reduced to 0.08%, 80 g/l of L-sorbose was obtained. Outgrowth inside the immobilized carriers was thought to block the pores of the carriers so that substrate could not easily diffuse through the carriers. Continuous production of L-sorbose was well accomplished in a bubble column reactor, and 6. 5 g/l.h of productivity and 81.2% of yield were obtained at a substrate feeding rate of 0.08h$^{-1}$ under the optimum conditions with carrier volume of 55% and aeration rate of 3 vvm.

  • PDF

Fed-Batch Sorbose Fermentation Using Pulse and Multiple Feeding Strategies for Productivity Improvement

  • Giridhar, R.;Srivastava, A.K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.340-344
    • /
    • 2000
  • Microbial oxidation of D-sorbitol to L-sorbose by Acetobacter suboxydans is of commercial importance since it is the only biochemical process in vitamin C synthesis. The main bottleneck in the batch oxidation of sorbitol to sorbose is that the process is severely inhibited by sorbitol. Suitable fed-batch fermentation designs can eliminate the inherent substrate inhibition and improve sorbose productivity. Fed-batch sorbose fermentations were conducted by using two nutrient feeding strategies. For fed-batch fermentation with pulse feeding, highly concentrated sorbitor (600g/L) along with other nutrients were fed intermittently in four pulses of 0.5 liter in response to the increased DO signal. The fed-batch fermentation was over in 24h with a sorbose productivity of 13.40g/L/h and a final sorbose concentration of 320.48g/L. On the other hand, in fed-batch fermentation with multiple feeds, two pulse feeds of 0.5 liter nutrient medium containing 600g/L sorbitol was followed by the addition of 1.5 liter nutrient medium containing 600g/L sorbitol at a constant feed rate of 0.36L/h till the full working capacity of the reactor. The fermentation was completed in 24h with an enhanced sorbose productivity of 15.09g/L/h and a sorbose concentration of 332.60g/L. The sorbose concentration and productivity obtained by multiple feeding of nutrients was found to be higher than that obtained by pulse feeding and was therefore a better strategy for fed-batch sorbose fermentation.

  • PDF

Production of D-sorbitol and L-sorbose from Jerusalem artichoke by Zymomonas mobilis and Gluconobacter sMboxpydans (Zymomonas mobilis와 Gluconobacter suboxydans를 이용한 돼지감자로부터 D-sorbitol 및 L-sorbose 생성에 관한 연구)

  • 전억한;김원극
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.10-16
    • /
    • 1993
  • The use of Jerusalem artichoke containing $\beta$-1, 2-fructose oligomer for the production of D-sorbitol and L-sorbose has been studied. The employment of inulinase(0.398%, v/v) for the hydrolysis of 40% (v/w) Jerusalem artichoke juice resulted in 36.7g/1 of glucose and 85.3g/1 of fructose at $50^{\circ}C$. These sugars were utilized as substrates for D-sorbitol and L-sorbose production. Coimmobilization of inulinase and permeabilized cells of Zymomonas mobilis in the mixture of chitin (5%, w/e) and x-carrageenan(4%, w/v) resulted in the production of 30.2g/1 of D-sorbitol by using inulin as a substrate. The process of L-sorbose production from D-sorbitol by Gluconobacter suboxydans was optimized with respect to the substrate concentration, level of dissolved oxygen and glucosic and concentration. Gluconlc acid produced by Zymomonas mobilis from glucose was found to inhibit Gluconobacter suboxtans in conversion of D-sorbitol to L-sorbose. In view of removing such inhibitory effect by gluconic acid, mutants were selected by the NTG (N-methyl-N'-N'-nitro-N-nitrosoguanidlne) treated method. Mutants selected by NTG mutagenesis showed no inhibitory effects of gluconic acrid against L-sorbone production when its concentration increased up to 100g/1. A mutant produced 40.1g/l of L-sorbose in the medium containing 100g/l D-sorbitol and 100g/l-gluconic acid. This result is consider able when compared with L-sorbose concentration (21.7g/1) obtained from the fermentation with wild type strain of Gluconobacter suboxnians.

  • PDF

Production of L-sorbose from the resting cells of Acetobacter suboxydans (Acetobacter suboxydans의 휴지 균체에 의한 L-sorbose의 생산)

  • Cho, Won-Dai;Ma, Sang-Jo
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.481-487
    • /
    • 1993
  • The production of sorbose from sorbitol in resting cell system of Acetobacter suboxydans was studied. The conversion of sorbose from sorbitol was markedly influenced by several factors such as the substrate concentration, reaction time, temperature, pH, metal ions, growth factors and aeration in the resting cells. Sorbose production rapidly increased in the range of 6 mg/ml cells with the concentration of 5% sorbitol. For production of sorbose from sorbitol, optimal temperature and pH were $30^{\circ}C$ and 6.0. The production of sorbose from sorbitol was activated by 1 mM of $Al^{+3}$ while inhibited by $Ni^{+2}$. The conversion of sorbitol to sorbose was stimulated by the adding of 1 mM p-aminobenzoic acid and nicotinic acid, respectively. During incubation of 1.5 ml of reaction mixture in 50 ml of Erlenmeyer flask, 5% sorbitol was completly converted to sorbose after 20 hours.

  • PDF

Effect of Cross-Linking Agents on L-Sorbose Production by Immobilized Gluconobacter suboxydans Cells

  • PARK, YOUNG-MIN;SANG-KI RHEE;EUI-SUNG CHOI;IN SIK CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.696-699
    • /
    • 1998
  • Biological oxidation of D-sorbitol to L-sorbose using permeated and immobilized cells of Gluconobacter suboxydans was carried out to investigate the optimum reaction condition. The stabilization effect of cross-linking agents such as glutaraldehyde, tannic acid, and polyethylene imine to prevent the leakage of enzymes from beads containing permeated and immobilized cells of G. suboxydans was examined by the production of L-sorbose from the mixture of D-sorbitol and gluconic acid. The protein concentration effused from immobilized beads treated with only glutaraldehyde was $5.2\mug/m\ell$ after 20 h. The beads of G. suboxydans immobilized with alginate and cross-linked with 0.3% glutaraldehyde was the most useful for the oxidation of D-sorbitol to L-sorbose.

  • PDF

Studies on the Production of L-Ascorbic Acid; Examination of the Metabolites Produced by Gluconobacter spp. from L-Sorbitol, L-Sorbose or D-Glucose (L-Ascorbic Acid 생산에 관한 연구; Gluconobacter spp.의 L-sorbitol, L-sorbose, 포도당 대사물에 관한 연구)

  • 김공환;정종경구양모
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1990
  • G. Melanogenus metabolized D-sorbitol to L-sorbose, and to 2-keto-L-gulonic acid. G. cerinus oxidized D-glucose to accumulate 2-keto-D-gluconic acid, 5-keto-D-gluconic acid and 2,5-diketo-D-gluconic acid. 2,5-Diketo-D-gluconc acid was confirmed to be the further oxidized product of 2-keto-D-gluconic acid. The amount of calcium carbonate added to the culture broth increased the relative amount of 5-keto-D-gluconate. When, instead of calcium carbonate, other bases were employed to neutralize the oxidized products, 2-keto-D-gluconate was produced only.

  • PDF

Optimization of the Transformation of D-Glucose to Vitamin C (Glucose를 비타민 C로 변형시키는 과정의 최적화에 대한 연구)

  • Chung, Jong-Kyeong;Goo, Yang-Mo;Kim, Kong-Hwan
    • YAKHAK HOEJI
    • /
    • v.32 no.6
    • /
    • pp.386-393
    • /
    • 1988
  • Chemical transformation of D-glucose to 2-keto-L-gulonic acid and L-ascorbic acid has been examined. D-Sorbitol obtained from D-glucose was microbiologically oxidized to L-sorbose by G. suboxydans in 90% yield. On treatment of L-sorbose with acetone in the presence of sulfuric acid, its diacetonide is obtained in 95% yield. This diacetonide is oxidized to the corresponding acid with nickel chloride-hypochlorite, and the acid is directly transformed to L-ascorbic acid. The over all yield of Vitamin C from D-glucose achieved is 54%.

  • PDF

Sorbitol production from Jerusalem artichoke by inulinase and permeabilized Zymomonas mobilis (Inulinase와 투과성이 향상된 Zymomonas mobilis를 이용한 Jerusalem artichoke로 부터의 sorbitol생산)

  • 김인철;전억한
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 1992
  • The use of Jerusalem artichoke containing $\beta$-1, 2-fructose oligomer in the production of sorbitol that is used as food additives and precursor for the L-sorbose has been studied. Coimmobilization of both inulinase and oxidoreductase was considered for the simultaneous reaction for hydrolysis of inulin and conversion of glucose and fructose liberated from inulin to sorbitol. Both inulinase and oxidoreductase were immobilized in chitin(5%, w/v) and K-carrageenan(4%, w/v), The activity of oxidoreductase was specified by permeabilization of Zymomonas mobilis cell with 0.2% CTAB(Cetyltrimethylammonlumbromide). The use of inulinase for hydrolysis of inulin resulted in 36.65g/l of glucose and 85.32g/1 of fructose respectively. These are valuable substrates for sorbitol production. Using these hydrolyzates, accumulation of 35.64g/l for sorbitol occurred at $38^{\circ}C$ and pH6.2. When permeabilized cells and inulinase were coimmobilized, sorbitol produced at 30.15g/l although it is low compared with 35.64g/l in separated reactor system.

  • PDF

Production of Rare Monosaccharides Using Microorganisms and Their Enzymes

  • Izumori, Ken;Bhuiyan, Shakhawat Hossain
    • Food Industry And Nutrition
    • /
    • v.2 no.1
    • /
    • pp.16-21
    • /
    • 1997
  • Microbial of enzymatical methods are suitable for production of rare monosaccharides. Using oxidation and reduction ability of Microorganisms, various rare ketoses and polyols can be produced, for example D-tagatose from galagtitol by Enterobacter agglomerans strain 221e. L-tagatose from galactitol by Klebsiella pheumonias strain 40b, L-psicose from allitol by Gluconobacter frateurii IFO 3254, D-talitol from d-tagatose by Aureobasidium pullulans strain 113B, allitol from D-psicose by Enterobacter agglomerans strain 221e and so on. We can produce various rare aldoses and ketoses using aldose isomerases, for example L-galactose from L-tagatose by D-arabnose isomerase, and L-ribose from L-ribulose by L-isomerase, and so on. D-Tagatose 3-epimerase of Pseudomonas sp. ST-24 is very useful for preparationof various rare ketoses, for example D-psicose from D-fructose, D-sorbose from D-tagatose, L-fructose, from L-psicose and so on. Using polyol dehydrogenases, aldose isomerases and D-tagatose 3-epimerase, we can design the suitable for production of a certain rare monosaccharide from a suitable substrate.

  • PDF

Selective Isolation and Phylogeny of the Yeast Species Associated with Aloe vera and Aloe saponaria (알로에 베라(A. vera)와 알로에 사포나리아(A. saponaria)로 부터 효모의 분리 및 계통분석)

  • Choi, Sungchang;Kim, Myung-Uk;Kim, Jong-Shik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.240-243
    • /
    • 2013
  • BACKGROUND: Several yeast species have potential applications in biotechnology and the identification of such yeast species is of great interest. The first step in the identification of yeasts is the establishment of an effective isolation method. Thus, we compared the efficacy of different yeast media in the isolation of yeast associated with Aloe vera and Aloe saponaria. METHODS AND RESULTS: In this study, we spread homogenized A. vera and A. saponaria leaves onto 4 different yeast selective media containing chloramphenicol, streptomycin, Triton X-100 and L-sorbose. We observed high selectivity for yeast and many colonies on media. We isolated 67 yeast strains from A. vera and 42 yeast strains from A. saponaria. We used phylogenetic analysis to identify the yeast isolates based on ITS region sequencing and performed sequence analysis on representative isolates from each agar plate. Further, we compared the sequences obtained with reference sequences. The yeast species isolated from A. vera were as follows: 56 isolates of Meyerozyma, 9 isolates of Cryptococcus, and 1 isolate each of Rhodotorula and Sporobolomyces. Those isolated from A. saponaria were as follows: 41 isolates of Rhodosporidium and 1 isolate of Sporobolomyces. CONCLUSION(S): All the isolates obtained using large agar plate containing chloramphenicol, streptomycin, Triton X-100 and L-sorbose were identified as yeast. Therefore, we concluded that this method is useful for selective screening of yeast species.