• Title/Summary/Keyword: L-moves

Search Result 71, Processing Time 0.026 seconds

Development of character recognition system for the billet images in the steel plant

  • Lee, Jong-Hak;Park, Sang-Gug;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1183-1186
    • /
    • 2004
  • In the steel production line, the molten metal of a furnace is transformed into billet and then moves to the heating furnace of the hot rolling mill. This paper describes about the realtime billet characters recognition system in the steel production line. Normally, the billets are mixed at yard so that their identifications are very difficult and very important processing. The character recognition algorithm used in this paper is base on the subspace method by K-L transformation. With this method, we need no special feature extraction steps, which are usually error prone. So the gray character images are directly used as input vectors of the classifier. To train the classifier, we have extracted eigen vectors of each character used in the billet numbers, which consists of 10 arabia numbers and 26 alphabet aharacters, which are gathered from billet images of the production line. We have developed billet characters recognition system using this algorithm and tested this system in the steel production line during the 8-days. The recognition rate of our system in the field test has turned out to be 94.1% (98.6% if the corrupted characters are excluded). In the results, we confirmed that our recognition system has a good performance in the poor environments and ill-conditioned marking system like as steel production plant.

  • PDF

Implementation and Analysis of the FMIPv6 (Fast Handover for Mobile IPv6) Using Layer 2 Triggers (제2계층 트리거를 이용한 FMIPv6 구현 및 분석)

  • Oh, Seung-Hun;Lee, Sung-Sik;Kim, Young-Han
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.551-558
    • /
    • 2005
  • In this paper, we implement the fast handovers for mobile IPv6 (FMIPv6) on Linux system. Due to its dependency on operations in layer-2 (L2), we have added some functions into the network driver to generate triggers as the mobile node moves. We design and implement the FMIPv6 functions divided into two parts as an access router and a mobile node. We compare the packet loss and delay of the FMIPv6 implementation during the handover period with those of the MIPv6 and investigate the performance improvement.

A Study on Mechanical Ventilation Characteristics in Cargo Handling Area of Tanker (유조선 화물취급구역내 동력환기특성에 관한 연구)

  • 조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2001
  • In regulation of IGC code 12.1 mechanical ventilation should be arranged to ensure sufficient air movement through the space to avoid the accumulation of flammable or toxic vapours and ensure a safe working environment, but in no case should the ventilation system have a capacity of less than 30 changes of air per hour baed upon the total volume of the space. In this study, a scaled mode chamber was constructed to investigate the ventilation characteristics and stagnation area in the hood room of LNG carrier and pump room in tanker. An experimental study was performed on the model by using visualization equipment with a laser apparatus and an image intensifier CCD camera. Twelve different kinds of measuring areas were selected as the experimental condition. Instant simultaneous velocity vectors in the whole fields were measured by a 2-D PIV system A three-dimensional numerical simulation was also carried out for three different Reynolds numbers. Then the CFD predictions were discussed with the experimental results. The results show the spiral L-shape flow that moves from the opening on the left wall diagonally to the upper right part dominates the ventilation structure. The stationary area of hood room in the velcoity distributions was located in the upper left stern part.

  • PDF

Numerical Study on Effects of Velocity Profile of Liquid Container on Sloshing (액체 용기의 속도 프로파일이 슬로싱에 미치는 영향 해석)

  • Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.313-319
    • /
    • 2016
  • It is very important to understand and control the sloshing in a liquid container that is partially filled with liquid. Previous studies focused primarily on the sloshing and resonance caused by sinusoidal excitations, while the present study focuses on understanding and suppressing sloshing in a container that moves rapidly from a given point to another in industrial applications. To achieve this, we first numerically predict the two-phase flow induced by the horizontal movement of a rectangular container. Then we analyze the effects of container-velocity profile (in particular acceleration/deceleration duration) on sloshing. Results show that sloshing is significantly suppressed when the acceleration/deceleration duration is a multiple of the 1st-mode natural period of sloshing.

NUMERICAL ANALYSIS OF THE SHOCK WAVES IN COMPRESSIBLE SOLIDS AND LIQUIDS USING A SIX-EQUATION DIFFUSE INTERFACE MODEL (6-방정식 확산경계 모델을 이용한 압축성 고체 및 액체에서 충격파 해석)

  • Yeom, Geum-Su
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.99-107
    • /
    • 2012
  • In this paper, the shock waves in compressible solids and liquids are simulated using a six-equation diffuse interface multiphase flow model that is extended to the Cochran and Chan equation of state. A pressure relaxation method based on a volume fraction function and a pressure-correction equation are newly implemented to the six-equation model. The developed code has been validated by a shock tube problem with liquid nitromethane and an impact problem of a copper plate on a solid explosive. In addition, a new problem, an impact of a copper plate on liquid nitromethane, has been solved. The present code well shows the wave structures in compressible solids and liquids without any numerical oscillations and overshoots. After the impact of a solid copper plate on liquid, two shock waves (one propagates into liquid and the other into solid) are generated and a material interface moves to the impacting direction. The computational results show that the shock velocity inside the liquid linearly increases with the impact velocity.

Experimental and Numerical Studies in a Vortex Tube

  • Sohn Chang-Hyun;Kim Chang-Soo;Jung Ui-Hyun;Lakshmana Gowda B.H.L
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.418-425
    • /
    • 2006
  • The present investigation deals with the study of the internal flow phenomena of the counterflow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1MPa to 0.3MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments.

Stabilization Control of the Nonlinear System using A RVEGA ~. based Optimal Fuzzy Controller (RVEGA 최적 퍼지 제어기를 이용한 비선형 시스템의 안정화 제어에 관한 연구)

  • 이준탁;정동일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.393-403
    • /
    • 1997
  • In this paper, we proposed an optimal identification method of identifying the membership func¬tions and the fuzzy rules for the stabilization controller of the nonlinear system by RVEGA( Real Variable Elitist Genetic Algo rithm l. Although fuzzy logic controllers have been successfully applied to industrial plants, most of them have been relied heavily on expert's empirical knowl¬edge. So it is very difficult to determine the linguistic state space partitions and parameters of the membership functions and to extract the control rules. Most of conventional approaches have the drastic defects of trapping to a local minima. However, the proposed RVEGA which is similiar to the processes of natural evolution can optimize simulta¬neously the fuzzy rules and the parameters of membership functions. The validity of the RVEGA - based fuzzy controller was proved through applications to the stabi¬lization problems of an inverted pendulum system with highly nonlinear dynamics. The proposed RVEGA - based fuzzy controller has a swing -. up control mode(swing - up controller) and a stabi¬lization one(stabilization controller), moves a pendulum in an initial stable equilibrium point and a cart in an arbitrary position, to an unstable equilibrium point and a center of the rail. The stabi¬lization controller is composed of a hierarchical fuzzy inference structure; that is, the lower level inference for the virtual equilibrium point and the higher level one for position control of the cart according to the firstly inferred virtual equilibrium point. The experimental apparatus was imple¬mented by a DT -- 2801 board with AID, D/A converters and a PC - 586 microprocessor.

  • PDF

Design of Cam Contour for Constant Hangers (등하중지지대의 캠 윤곽 설계)

  • Lee, Gun-Myung;Park, Mun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.669-675
    • /
    • 2011
  • A constant hanger is a device for supporting pipes in plants. It supplies a constant force to a supporting pipe even if the pipe moves because of thermal expansion. In this paper, we propose a method for designing the contour of a cam for a constant hanger. It has been shown that the contour of a cam must satisfy the geometrical relation of the cam, the force balance equation for the load tube, the relation between the side spring compression and the cam rotation angle, and the moment balance equation for the cam. A calculation procedure to solve these equations simultaneously is proposed, and a constant hanger is designed successfully.

Estimation of Microwave Path Loss and Cross-Polarization Coupling in a Simple Urban Area

  • Yisok Oh;No, Chan-Ho;Sung, Hyuk-Je;Lee, Byung-Hoon;Koo, Yeon-Geon
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • Whereas it is well known that microwave propagation around corners of urban area is estimated well by the uniform geometrical theory of diffraction (UTD), it is not clear how much depolarization occurs at a given receiver position and how much transmission through walls affects to total path loss. This paper presents the results of the ray tracing simulation to answer these questions. Simulations of microwave propagation around corners were performed for various line-of-sight (LOS) and out-of-sight(OOS) positions of a receiver, by summing the electrical fields of reflected, diffracted and transmitted rays coherently. Since height difference between transmitter and receiver, as well as ground plane, causes depolarization, the ray tracing simulation estimates the cross-polarization coupling. It was found that the cross-polarization coupling decreases as receiver moves away from transmitter. Another part of the study focused on the signal transmitted through building walls of the corner. It was found that the transmitted field is dominant at OOS region when the conductivity of the walls is low (for example, lower than 0.0l S/m). The simulation results of the ray tracing technique in this study agreed well with an experimental measurement around corners.

  • PDF

Design of Orbit Simulation Tool for Lunar Navigation Satellite System

  • Hojoon Jeong;Jaeuk Park;Junwon Song;Minjae Kang;Changdon Kee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.335-342
    • /
    • 2023
  • Lunar Navigation Satellite System refers to a constellation of satellite providing PNT services on the moon. LNSS consists of main satellite and navigation satellites. Navigation satellites orbiting around the moon and a main satellite moves the area between the moon and the L2 point. The navigation satellite performs the same role as the Earth's GNSS satellite, and the main satellite communicates with the Earth for time synchronization. Due to the effect of the non-uniform shape of the moon, it is necessary to focus on the influence of the lunar gravitational field when designing the orbit simulation for navigation satellite. Since the main satellite is farther away from the moon than the navigation satellite, both the earth's gravity and the moon's gravity must be considered simultaneously when designing the orbit simulation for main satellite. Therefore, the main satellite orbit simulation must be designed through the three-body problem between the Earth, the moon, and the main satellite. In this paper, the orbit simulation tool for main satellite and navigation satellite required for LNSS was designed. The orbit simulation considers the environment characteristics of the moon. As a result of comparing long-term data (180 days) with the commercial program GMAT, it was confirmed that there was an error of about 1 m.