• Title/Summary/Keyword: L-moment method

Search Result 142, Processing Time 0.029 seconds

Design of A Linear Polarized-Slotted Waveguide Antenna Using Longitudinal Slots on the Broad wall of a Rectangular Waveguide (구형도파관의 넓은면에 축방향 슬롯을 배열한 직선편파 특성의 도파관 안테나 설계)

  • Shin, P. S.;Ko, Y. H.;Ko, K. T.;Paek, L. J.;Lee, Y. H.;Tae, J. H.
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.153-156
    • /
    • 1998
  • 구형도파관의 넓은 면에 축방향 슬롯을 파고 또 각각의 슬롯을 축방향으로 배열하였 때의 원거리 방사패턴을 구하는 과정을 보였으며 측정된 결과와 계산결과를 비교하였다. 방사전자계는 슬롯의 표면에 유기되는 등가의 자기전류로부터 계산할 수 있으며 임의의 개수를 가지는 배열안테나의 경우에는 각각의 슬롯이 자기 어드미턴스와 상호결합에 의한 영향을 받기 때문에 원하는 방사패턴을 얻기 위해서는 상호 어드미턴스를 고려하여 슬롯의 길이와 오프셋을 고려하여야 한다. 슬롯에서의 전계분포 해석은 모멘트법(method of moment)을 사용하여 해석하였다. 본 연구에서는 직선편파특성을 가지는 슬롯 배열 안테나의 설계를 위하여 슬롯의 자기 및 상호 어드미턴스를 구하고, 반복적인 수치해석 과정을 통하여 입력임피던스의 최적화 방법에 대하여 논하였다.

  • PDF

Estimates of Regional Flood Frequency in Korea (우리나라의 빈도홍수량의 추정)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1019-1032
    • /
    • 2004
  • Flood frequency estimate is an essential index for determining the scale of small and middle hydraulic structure. However, this flood quantity could not be estimated directly for practical design purpose due to the lack of available flood data, and indirect method like design rainfall-runoff method have been used for the estimation of design flood. To give the good explain for design flood estimates, regional flood frequency analysis was performed by flood index method in this study. First, annual maximum series were constructed by using the collected data which covers from Japanese imperialism period to 1999. Wakeby distribution recommended by WMO(1989) was used for regional flood frequency analysis and L-moment method by Hosking (1990) was used for parameter estimation. For the homogeneity of region, the discordance and heterogeneity test by Hosking and Wallis(1993) was carried for 4 major watersheds in Korea. Physical independent variable correlated with index flood was watershed area. The relationship between specific discharge and watershed area showed a type of power function, i.e. the specific discharge decreases as watershed area increases. So flood quantity according to watershed area and return period was presented for each watershed(Han rivet, Nakdong river, Geum river and Youngsan/Seomjin river) by using this relation type. This result was also compared with the result of point frequency analysis and its regionalization. It was shown that the dam construction couldn't largely affect the variation of peak flood. The property of this study was also examined by comparison with previous studies.

Magnetic Properties and Electronic Structure of $Pt_3Ni$ (001), (110) and (111) Surfaces: Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.129-129
    • /
    • 2011
  • The limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of properties and electronic structures of seven layered $Pt_3Ni$ (001), (110), and (111) surfaces. The first principle method based on density functional theory (DFT) is carried out. It is found that the bulk $Pt_3Ni$ has a ferromagnetic ground state with the ordered fcc type L12 structure, which is in good agreement with other results. Non magnetic Pt has the induced magnetic moment due to the strong hybridization between 3d Ni and 5d Pt. The magnetic moment of Pt and Ni enhanced on the surface of each due to surface effect however the magnetic moment of surface Pt in the Pt-segregated Pt3Ni (111) decreased and the magnetic moment of Ni in Ni rich subsurface increased significantly. The calculated d band centers of Pt explain the possibilities for oxygen absorption and play the important roles in altering the catalytic properties. The spin polarized densities of states are presented in order to understand physical properties of Pt in different surfaces in detail.

  • PDF

Comparison of Compressive Forces on Low Back(L5/S1) for One-hand Lifting and Two-hands Lifting Activity

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.597-603
    • /
    • 2011
  • Objective: The objective of this study was to compare one-hand and two-hands lifting activity in terms of biomechanical stress for the range of lifting heights from 10cm above floor level to knuckle height. Background: Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lifting tasks using both a one-handed as well as a two-handed lifting technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lifting tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lifting tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 43%, as the workload was increased twice from 7.5kg to 15.0kg. For the right-hand lifting task, these were increased by the average 34%. For the two-hands lifting tasks, these were increased by the average 25%. The lateral shear forces at L5/S1 of one-hand lifting tasks, notwithstanding the half of the workload of two-hands lifting tasks, were very high in the 300~317% of the one of two-hands lifting tasks. The moments at L5/S1 of one-hand lifting tasks were 126~166% of the one of two-hands lifting tasks. Conclusion: It is concluded that the effect of workload for one-hand lifting is greater than two-hands lifting. It can also be concluded that asymmetrical effect of one-hand lifting is much greater than workload effect. Application: The results of this study can be used to provide guidelines of recommended safe weights for tasks involved in one-hand lifting activity.

A Study on the System Reduction Method Using Aggregation Technique (Aggregation기법에 의한 시스템의 간소화 방법에 관한 연구)

  • Park, Joon Yeal;Choi, Keh Kun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.450-454
    • /
    • 1986
  • In this paper a complexity reduction method in a linear system is studied. The poles to be retained are selected by the dominancy and the values of residues at respective poles. The reduced order model is obtained by the aggregation method, and the aggregation matrix is determined by the eigenvectors of a controllable canonical form. We consider the markov parameter and the time-moment at the same time, thereby getting rid of the steady-state errors. The input-output matrices are obtained using a chained aggregation matrix, and application of this method is illustrated by example.

  • PDF

Regional Drought Frequency Analysis of Monthly Rainfall Data by the Method of L-Moments (L-Moment법을 이용한 월 강우량 자료의 지역가뭄빈도 해석)

  • Yun, Yong-Nam;Park, Mu-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • To quantitatively investigate the nationwide drought characteristics and to comparatively evaluate the 1994-1995 drought with several past droughts of significant magnitude regional frequency analysis is made for the meteorological stations in each of the 47 subbasins covering the whole nation. With monthly precipitation data for the period of records at the stations in each subbasin low precipitation data series of various durations are formulated with the running totals of monthly data and fitted to probability distributions. The method of L-method of L-moments is used to determine the unbiased parameters of each distribution, and using the best-fit distribution for each subbasin the low precipitations of various durations with return periods of 5, 10, 20, 30, and 50 years are estimated. The drought frequency maps are drawn with the low drought frequency analysis the drought of 1994-1995 is evaluated in its severity and areal extent in comparison with four other past drought of significance. The current practice of safety standards for the design of impounding facilities is also evaluated with reference to the recurrence interval of the severe drought, and a recommendation is made for the future design standard.

  • PDF

PERFORMANCE OF LIMITERS IN MODAL DISCONTINUOUS GALERKIN METHODS FOR 1-D EULER EQUATIONS (1-D 오일러 방정식에 관한 Modal 불연속 갤러킨 기법에서의 Limiter 성능 비교)

  • Karchani, A.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • Considerable efforts are required to develop a monotone, robust and stable high-order numerical scheme for solving the hyperbolic system. The discontinuous Galerkin(DG) method is a natural choice, but elimination of the spurious oscillations from the high-order solutions demands a new development of proper limiters for the DG method. There are several available limiters for controlling or removing unphysical oscillations from the high-order approximate solution; however, very few studies were directed to analyze the exact role of the limiters in the hyperbolic systems. In this study, the performance of the several well-known limiters is examined by comparing the high-order($p^1$, $p^2$, and $p^3$) approximate solutions with the exact solutions. It is shown that the accuracy of the limiter is in general problem-dependent, although the Hermite WENO limiter and maximum principle limiter perform better than the TVD and generalized moment limiters for most of the test cases. It is also shown that application of the troubled cell indicators may improve the accuracy of the limiters under some specific conditions.

Analysis of Steel Reinforcement Ratio for Bent Pile Structures Considering Column-Pile Interaction (기둥-말뚝의 상호작용을 고려한 단일 현장타설말뚝의 철근비 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.181-188
    • /
    • 2014
  • In this study, an interactive analysis considering column-pile interaction is performed on the basis of an equivalent base spring model for supplementing virtual fixed point design of bent pile structures. Through this analytical method, the application of the minimum steel reinforcement ratio of the pile (0.4%) is analyzed by taking into account the major influencing parameters. Furthermore, the limit depth for steel reinforcement ratio is proposed through the relationships between column and pile conditions. To obtain the detailed information, it is found that an interactive analysis is intermediate in theoretical accuracy between the virtual fixed point model analysis and full-modeling analysis. Base on this study, it is also found that the maximum bending moment is located within cracking moment of the pile when material nonlinearity is considered. Therefore, the minimum steel reinforcement ratio is appropriately applicable for the optimal design of bent pile structures. Finally, the limit depth for steel reinforcement ratio ($L_{As=x%}$) is proposed by considering the field measured results. It is shown that the normalized limit depth ratio for steel reinforcement ratio ($L_{As=x%}/L_P$) decreases linearly as the length-diameter ratio of pile ($L_P/D_P$) increases, and then converges at a constant value.

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.