• 제목/요약/키워드: L-lactide

검색결과 187건 처리시간 0.02초

Effect of Peptide Charge on the Formation of Acylated Peptide Impurities in PLGA Formulations

  • Na, Dong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권2호
    • /
    • pp.91-94
    • /
    • 2011
  • The purpose of this study was to investigate the effect of peptide charge on the interaction between peptide and poly(D,L-lactide-co-glycolide) (PLGA) for evaluating mechanism of acylated peptide formation in PLGA matrix. As a model peptide, octreotide, a synthetic somatostatin analogue and active ingredient of commercial PLGA product, was used. The disulfide group of octreotide was reduced with dithiothreitol and the sulfhydryl groups were modified with N-${\beta}$-maleimidopropionic acid (BMPA) to neutralize octreotide with positive charge in physiological conditions. The BMPA-conjugated octreotide was identified by measuring the molecular mass with liquid chromatography-mass spectrometry. In the interaction study with PLGA, native octreotide showed initial adsorption to PLGA and substantial production of acylated peptides (56% of overall peptide), whereas BMPA-conjugated octreotide showed minimal adsorption to PLGA and no acylation products for 42 days. Consequently, the neutralization of octreotide completely inhibited the peptide acylation by preventing interaction of peptide with PLGA. In conclusion, this study demonstrates that the initial polymer interaction of peptide is important step for peptide acylation in PLGA matrix and suggests the modulation of peptide charge as strategy for inhibiting the formation of acylated peptide impurities.

비 분해성고분자와 블렌드를 이용한 생분해성 폴리유산의 효소분해속도 조절 (Control of Enzymatic Degradability of Biodegradable Polylactide by Blending with Non-degradable Polymers)

  • 장성호;박상보;이원기
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1161-1167
    • /
    • 2010
  • The effects of addition of non degradable polymers, polystyrene (PS) and poly(methyl methacrylate) (PMMA) on the rate of enzymatic degradation of biodegradable poly(l-lactide) (PLLA) have been studied in term of surface structure. Since a component in multicomponent polymeric system has shown surface enrichment, PS and PMMA which have lower surface energy than PLLA were selected as a minor blend component (5 wt%). Enzymatic degradation was carried out at $37^{\circ}C$ and pH 8.5 in the aqueous solution of Proteinase K. Two blend systems, partially miscible (PS/PLLA) and immiscible (PMMA/PLLA), showed the surface enrichment of 4 and 2 times of PS and PMMA, respectively. From the weight loss profile data, the slow degradation rate of both blend films was observed. This indicates that PS or PMMA domains which exist at surface act as a retardant of enzymatic attack.

Poly(L-lactide)와 돼지골기질에서 추출 부분정제한 골형성단백을 이용한 조형가능성 골형성유도체의 개발 (DEVELOPMENT OF MOLDABLE BONE REGENERATING THERAPEUTICS USING PARTIALLY PURIFIED PORCINE BONE MORPHOGENETIC PROTEIN AND BIORESORBABLE POLYMER)

  • 이종호;정종평;이승진
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권2호
    • /
    • pp.179-185
    • /
    • 2000
  • The purpose of this study was to develop an osteogenic, biodegradable material using polymer and BMP. It was designed to have structural function and be moldable, for the reconstruction of load bearing areas and deformities of various configurations. Bone apatite was added to Poly(L-lactide)(PLLA) and made porous for osteoconductability and ease of BMP loading. The materials, with or without BMP purified from porcine bone matrix, were evaluated in cranial bone defect models in rats for biocompatibility and bone regeneration capability. The following results were obtained: The PLLA-BMP material with BMP added to the polymer showed 30% healing of cranial bone defects in rats during the 2 weeks to 3 months period of observation. The moldable PLLA agent without BMP also showed 25% bone healing capacity. Although new bone formation was incomplete in the critical size defect of rat cranium, it can be concluded that the unique moldability of those agents makes them useful for the reconstruction of various bone defects and maxillofacial deformities.

  • PDF

Characterization of Poly(ethylene oxide)-b-Poly(L-lactide) Block Copolymer by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

  • Jeongmin Hong;Donghyun Cho;Taihyun Chang;Shim, Woo-Sun;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.341-346
    • /
    • 2003
  • A poly(ethylene oxide)-b-poly(L-lactide) diblock copolymer (PEO-b-PLLA) is characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and a block length distribution map is constructed. Although the MALDI- TOF mass spectrum of PEO-b-PLLA is very complicated, most of the polymer species were identified by isolating the overlapped isotope patterns and by fitting the overlapped peaks to the Schulz-Zimm distribution function. Reconstructed MALDI-TOF MS spectrum was nearly identical to the measured spectrum and this method shows its potential to be developed as an easy and fast analysis method of low molecular weight block copolymers.

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

Cellular Uptake Behavior of Poly(D,L-lactide-co-glycolide) Nanoparticles Derivatized with HIV-1 Tat49-57 Peptide (Abbreviated Title: Tat-PLGA Nanoparticles)

  • Park, Ju-Young;Nam, Yoon-Sung;Kim, Jun-Oh;Han, Sang-Hoon;Chang, Ih-Seop
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권2호
    • /
    • pp.101-106
    • /
    • 2004
  • This work aims at examining the cellular uptake behavior of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles derivatized with a protein transduction domain (PTD) using HeLa cells. For this purpose, $Tat_{49-57}$ peptide derived from transcriptional activation (Tat) protein of HIV type-1 was covalently conjugated to the terminal end of PLGA. Nanoparticles were ten prepared with the $Tat_{49-57}-PLGA$ conjugates by a spontaneous phase inversion method. The prepared particles had a mean diameter of ca. 84 nm, as measured by dynamic light scattering. The interaction of the Tat-PLGA nanoparticles with cells was examined by using confocal laser scanning microscopy. It was found tat Tat-PLGA nanoparticles incubated with HeLa cells could efficiently translocate into cytoplasm, while plain PLGA nanoparticles showed negligible cellular uptake. In addition, even at $4^{\circ}C$ or in the presence of sodium azide significant cellular internalization of Tat-PLGA nanoparticles was still observed. These results indicate that a non-endocytotic translocation mechanism might be involved in the cellular uptake of Tat-PLGA nanoparticles.

생분해성 고분자의 전기분사를 이용한 약물방출 스텐트용 금속표면 코팅 및 ALA방출 거동 (Metal Surface Coating Using Electrospray of Biodegradable Polymers and $\alpha$-Lipoic Acid Release Behavior for Drug-Eluting Stents)

  • 김동민;이봉수;박철호;박귀덕;손태일;정명호;한동근
    • 폴리머
    • /
    • 제34권2호
    • /
    • pp.178-183
    • /
    • 2010
  • 의료용 금속스텐트는 관상동맥계 심장질환을 앓고 있는 환자에 시술되어 상대적으로 생존율을 높여 준다. 그러나, 재협착 및 후기 혈전증으로 인하여 새로운 스텐트의 개발이 시급하게 되었다. 이러한 문제점을 해결하기 위해서 신생내막 과대증식을 막을 수 있는 것으로 알려진 alpha lipoic acid(ALA)를 생분해성 고분자인 poly(lactide-coglycolide)(PLGA), poly(L-lactide)(PLLA) 및 poly($\varepsilon$-caprolactone)(PCL)과 혼합하여 전기분사 방식으로 스테인레스 스틸 표면 위에 코팅하였다. 코팅된 고분자로부터 약물방출 거동은 고분자의 종류와 농도, 용출속도 및 용매의 종류에 따라서 조사하였다. 약물방출 속도는 유리전이온도($T_g$)가 낮은 PCL에서 가장 빨랐으며 PLGA, PLLA 순서를 보였다. 고분자 표면의 거친정도는 용출속도가 증가함에 따라서 증가하였고, 용매의 비등점의 차이에 의해서 약물방출속도가 변화됨을 알 수 있었다. 이러한 약물방출 거동을 조절함으로써 ALA가 담지된 생분해성 고분자로 코팅된 약물방출 스텐트를 실제 임상적용이 가능할 것으로 기대된다.

Synthesis and Physical Properties of New Biodegradable Polyester-Polypeptide Copolymer

  • Yong Kiel Sung;Chu
    • 대한의용생체공학회:의공학회지
    • /
    • 제13권2호
    • /
    • pp.147-154
    • /
    • 1992
  • Poly (glycolic aclu-co-glycine-L-lactic aclu) has been prepared by rlng opening polymerlzation. The monomer 6-methyl morpholine-2, 5-dlone was synthe-slzed by bromoproplonylation of 2 bromopropionyl bromide with glycine. Glycolide and 6-methyl morpholine-2, 5-dione have been used as starling materials for polydepsipeptides. The synthesized copolymers have been Identlrled by NMR and FT-lR spectrophotometer. The Tg value of poly(glycollc aclu-co glycine-L-tactic acld ) Is In creased with increasing mole fraction of 6-methylmorpholine-2, 5-dlone(60-$84^{\circ}C$). The glass trasltion temperature of poly(glycolic acid-co-glycine-L-lactic-acid) (62-$86^{\circ}C$) is lower than that of poly (L-lactic acrid-co-glycine-L-lactic acid ). The thermal degradation of poly( L-lactic acid-co- glycine-L-lactic acid ) Is decreased with increasing mole fraction of L-lactide. The thermal degrada pion of poly(glycolic acrid-co-91ycine-L-lactic aclu ) is increased with increasing mole Fraction of glycolide.

  • PDF

비용매 휘발법을 이용한 생체모사 혈액친화성 폴리락티드-카프로락톤 공중합체 필름의 제조 (Blood-compatible Bio-inspired Surface of Poly(L-lactide-co-ε-caprolactone) Films Prepared Using Poor Co-solvent Casting)

  • 임진익;김수현
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.40-45
    • /
    • 2015
  • 혈항혈전성 표면의 제조를 위해 간단한 비용매 휘발 방법을 통하여 고탄성체이면서 생분해성 폴리 락티드-카프로락톤 공중합체 필름의 표면상에 연잎 구조물과 유사한 마이크로 돌기를 만들어 주었다. 표면 구조와 소수성도, 항혈전 효과 등을 시험했으며, 결정화도와 탄성회복률 등의 물리적 특성도 분석하였다. 그 결과 비용매와 메틸렌클로라이드의 혼합 부피비 1:2에서 연잎표면과 유사한 최적의 효과를 얻었으며, 이때 수접촉각은 $124^{\circ}$였다. 혈소판 부착시험에서는 처리하지 않는 군에 비해 약 10%만 부착되는 효과를 확인할 수 있었다.

생분해성 고분자 코팅이 담관용 마그네슘 합금 스텐트의 분해 속도와 기계적 물성에 미치는 영향 (Effect of Biodegradable Polymer Coating on the Corrosion Rates and Mechanical Properties of Biliary Magnesium Alloy Stents)

  • 김현욱;이우일;송기창
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.36-43
    • /
    • 2020
  • 생분해성 금속인 마그네슘 합금 와이어를 이용하여 담관용 스텐트를 제작하였다. 생체 내에서 마그네슘 합금의 문제점인 빠른 분해 및 부식을 제어하기 위하여 마그네슘 합금 와이어를 생분해성 고분자인 polycaprolactone (PCL), poly(propylene carbonate) (PPC), poly(L-lactic acid) (PLLA), poly(D,L-lactide-co-glycolide) (PLGA) 등으로 코팅하였다. 표면분해가 이루어지는 고분자인 PPC의 경우는 전분해 거동을 보이는 다른 고분자들(PCL, PLLA, PLGA)에 비해 크랙이나 박리가 없어 가장 효율적으로 마그네슘 와이어의 분해 속도를 지연시켰다. 또한 생분해성 고분자 코팅이 마그네슘 합금 스텐트의 기계적 물성인 축 방향 힘에 미치는 영향에 대하여 조사하였다. 대부분의 생분해성 고분자(PCL, PLLA, PLGA)로 코팅된 스텐트는 코팅되지 않은 스텐트에 비해 축 방향의 힘이 증가하여 스텐트의 유연성을 감소시켰으나, PPC로 코팅된 스텐트는 코팅되지 않은 스텐트와 비슷한 축 방향의 힘을 나타내 스텐트의 유연성을 감소시키지 않았다. 이상의 결과로부터 PPC가 가장 효율적인 생분해성 고분자로 판단된다.