• Title/Summary/Keyword: L-lactic acid

Search Result 1,642, Processing Time 0.023 seconds

Effects of Phenolic Compounds of Persimmon Leaves on Antioxidative System and Miscellaneous Enzyme Activities Related to Liver Function in Ethanol-Induced Hepatotoxicity of Rats (감잎의 Phenolic Compounds가 에탄올을 투여한 흰쥐의 항산화계 및 기타 효소활성에 미치는 영향)

  • 정창주;윤준식;이명렬
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.79-87
    • /
    • 2004
  • To investigate antioxidative effects of phenolic compounds separated from persimmon leaves(PL)(Diospyros kaki Thunb.) on the ethanol-induced hepatotoxicity in rat, Sprague-Dawley rats weighing 100-150 g were divided into 5 groups; control group(CON), PL(70 mg/kg) administered group(PEl), ethanol(5 mL/kg, 25%) administered group(ETH), PL(70 mg/kg) and ethanol administered group (PE2), and PL(140 mg/kg) and ethanol administered group(PE3), respectively. The antioxidative activity of persimmon leaves decreased in order of ethylacetate>interphase materials>n-butanol>chloroform>n-hexane>water fraction. The growth rate and feed efficiency ratio decreased by ethanol were gradually increased to the adjacent level of CON by administering PL. The serum activities of ALT, alkaline phosphatase and lactic acid dehydrogenase elevated by ethanol were decreased significantly. It was also observed that the activities of SOD, catalase, and GSH-Px of rat liver increased by ethanol were markedly decreased in PL administered group as compared to ETH. The GSH content of liver was decreased by ethanol, but that was increased in PE1 and PE2 compared with ETH as a dose-dependant manner. These results suggested that phenolic compounds separated from persimmon leaves have a possible protective and relievable effect on the ethanol-induced hepatotoxicity in rats.

Comparison of the Rate of Demineralization of Enamel using Synthetic Polymer Gel (합성 폴리머 겔의 법랑질 탈회 속도 비교)

  • Lee, June-Hang;Shin, Jisun;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.190-199
    • /
    • 2019
  • $Carbopol^{(R)}$ 907 used as surface protecting agent in White's method is the one of the artificial caries lesion producing solution was discontinuing of production. New surface protecting material to substitute of $Carbopol^{(R)}$ 907 was required. The author prepared an artificial caries lesion producing solution as follows White's method with $Carbopol^{(R)}$ 907 and also another artificial caries lesion producing solution with $Carbopol^{(R)}$ $2050^{(R)}$. 96 flattened and polished enamel samples were immersed in a demineralizing solution of 0.1 mol/L lactic acid, 0.2% carboxyvinylpolymer and 50% saturated hydroxyapatite for 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 18 and 20 days. All samples from each group were subjected to polarized microscopy observed and image analysis for measuring the lesion depth. From the review of polarized images, the artificial caries lesion producing solution using $Carbopol^{(R)}$ 907 and $Carbopol^{(R)}$ 2050 can produced an artificial caries that was very similar to natural caries characters. From the regression analysis of the lesion depth produced by the artificial caries lesion producing solution using $Carbopol^{(R)}$ 907 and $Carbopol^{(R)}$ 2050, $Carbopol^{(R)}$ 2050 estimate as Y = 9.8X + 8.0 and $Carbopol^{(R)}$ 907 was Y = 8.4X - 0.4. R square value of $Carbopol^{(R)}$ 2050 and $Carbopol^{(R)}$ 907 was 0.965 and 0.945 respectively. The rate of demineralization by the artificial caries lesion producing solution using $Carbopol^{(R)}$ 2050 was faster than that of $Carbopol^{(R)}$ 907. And R square value of $Carbopol^{(R)}$ 2050 and $Carbopol^{(R)}$ 907 were very high and it means that the lesion depth was very high coefficient to demineralization period.