• 제목/요약/키워드: L-buthionine sulfoximine

검색결과 16건 처리시간 0.018초

Glutathione Depletion by L-Buthionine-S,R-Sulfoximine Induces Apoptosis of Cardiomyocytes through Activation of PKC-δ

  • Kim, Young-Ae;Kim, Mi-Young;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.358-363
    • /
    • 2013
  • In the present study, we investigated the effect of intracellular glutathione (GSH) depletion in heart-derived H9c2 cells and its mechanism. L-buthionine-S,R-sulfoximine (BSO) induced the depletion of cellular GSH, and BSO-induced reactive oxygen species (ROS) production was inhibited by glutathione monoethyl ester (GME). Additionally, GME inhibited BSO-induced caspase-3 activation, annexin V-positive cells, and annexin V-negative/propidium iodide (PI)-positive cells. Treatment with rottlerin completely blocked BSO-induced cell death and ROS generation. BSO-induced GSH depletion caused a translocation of PKC-${\delta}$ from the cytosol to the membrane fraction, which was inhibited by treatment with GME. From these results, it is suggested that BSO-induced depletion of cellular GSH causes an activation of PKC-${\delta}$ and, subsequently, generation of ROS, thereby inducing H9c2 cell death.

Induction of Apoptosis in Arsenic Trioxide-treated Lung Cancer A549 Cells by Buthionine Sulfoximine

  • Han, Yong Hwan;Kim, Sung Zoo;Kim, Suhn Hee;Park, Woo Hyun
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.158-164
    • /
    • 2008
  • Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an $IC_{50}$ of more than $50{\mu}m$. Low doses of ATO or BSO ($1{\sim}10{\mu}m$) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (${\Delta}{\Psi}_m$) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.

Aliphatic and Allyl Alcohol-Induced Liver Cell Toxicity and its Detoxification

  • Park, Su-Kyung;Lee, Wan-Koo;Park, Young-Hoon;Moon, Jeon-Ok
    • Toxicological Research
    • /
    • 제14권2호
    • /
    • pp.157-161
    • /
    • 1998
  • The mechanism of active aldehyde-induced liver disease and the enzymatic basis of detoxification were investigated using normal rat liver cell, Ac2F. Aliphatic alcohols including l-decyl alcohol, l-nonanol, l-heptanol, l-hexanol, l-propanol and allyl alcohol exerted a dose- and time-de-pendent toxicity to Ac2F cells. The extent of their toxicities in buthionine sulfoximine (inhibitor of glutathione synthesis) pretreated cells was greater than in pargyline (inhibitor of aldehyde dehydrogenase, ALDH). On the other hand, the toxicity of these alcohols were not affected by 4-methylpyrazole (inhibitor of alcohol dehydrogenase, ADH). These results suggest that the contents of glutathione (GSH) seems to be very important in protecting the cells from toxicants such as aliphatic alcohols.

  • PDF

흰쥐 간조직에서의 비소처리 영향 및 비소 전처리 효과 (Effect of Arsenic Treatment and Pretreatment in Rat Liver Tissue)

  • 노미경;손성향;부문종;김옥용
    • Applied Microscopy
    • /
    • 제24권4호
    • /
    • pp.78-85
    • /
    • 1994
  • Sodium arsenite ($NaAsO_2$) was injected to the rat subcutaneously for the study of the acute toxicity of arsenite on hepatocytes, and the effects of pretreatment of arsenite and glutathione on the lethalty of the arsenite treated rats. Arsenite treated rat hepatocytes showed vacuolated cytosol and shrinked nuclear and expanded perinuclear space and cytoplasmic membrane whirl. Rats pretreated with BSO (L-Buthionine-SR-Sulfoximine), less survived than arsenite treated alone. It means that glutathione acts as a protecting agent against the arsenite. Subcutaneous sublethal dose (10mg/kg body weight) treatment was showed the protecting activity to lethality of lethal dose (15mg/kg body weight) treated rat. 10mg/kg body weight sublethal dose effects appeared in six hours intervals of between treatments.

  • PDF

2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells

  • Mustafa, Ebtihal H;Mahmoud, Huda T;Al-Hudhud, Mariam Y;Abdalla, Maher Y;Ahmad, Iman M;Yasin, Salem R;Elkarmi, Ali Z;Tahtamouni, Lubna H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3213-3222
    • /
    • 2015
  • Background: Cancer metastasis depends on cell motility which is driven by cycles of actin polymerization and depolymerization. Reactive oxygen species (ROS) and metabolic oxidative stress have long been associated with cancer. ROS play a vital role in regulating actin dynamics that are sensitive to oxidative modification. The current work aimed at studying the effects of sub-lethal metabolic oxidative stress on actin cytoskeleton, focal adhesion and cell migration. Materials and Methods: T47D human breast cancer cells were treated with 2-deoxy-D-glucose (2DG), L-buthionine sulfoximine (BSO), or doxorubicin (DOX), individually or in combination, and changes in intracellular total glutathione and malondialdehyde (MDA) levels were measured. The expression of three major antioxidant enzymes was studied by immunoblotting, and cells were stained with fluorescent-phalloidin to evaluate changes in F-actin organization. In addition, cell adhesion and degradation ability were measured. Cell migration was studied using wound healing and transwell migration assays. Results: Our results show that treating T47D human breast cancer cells with drug combinations (2DG/BSO, 2DG/DOX, or BSO/DOX) decreased intracellular total glutathione and increased oxidized glutathione, lipid peroxidation, and cytotoxicity. In addition, the drug combinations caused a reduction in cell area and mitotic index, prophase arrest and a decreased ability to form invadopodia. The formation of F-actin aggregates was increased in treated T47D cells. Moreover, combination therapy reduced cell adhesion and the rate of cell migration. Conclusions: Our results suggest that exposure of T47D breast cancer cells to combination therapy reduces cell migration via effects on metabolic oxidative stress.

RAW 264.7 Cell에서 납에 의한 NO 생성의 조절에 미치는 Glutathione의 효과 (Effect of Glutathione on Lead Induced Modulation of NO Synthesis in RAW 264.7 Cell)

  • 오경재;권근상;윤욱희;신새론
    • Journal of Preventive Medicine and Public Health
    • /
    • 제35권4호
    • /
    • pp.269-274
    • /
    • 2002
  • Balb/c 마우스의 복강내에 Abelson leukemia virus (A-MuLV)를 주입하여 발생시킨 대식세포주 RAW 264.7 세포의 배양조건에 납과 NAC및 BSO를 첨가하여 세포생존율과 NO 및 ATP 생성량의 변화를 관찰한 결과, 납을 처리한 기본배양조건에서 RAW 264.7 세포의 생존율은 각 농도에서 차이가 없었으며 NO의 생성량은 $0.5{\mu}M$의 납농도에서부터 용량 의존적으로 감소하였으나 ATP의 생성량은 각 농도군에서 차이가 없었다. NAC을 전처리하고 납을 처리한 배양조건에서의 NO 및 ATP의 생성량은 대조군과 차이가 없었다. BSO를 전처리하고 납을 처리한 배양조건에서의 NO의 생성량은 납만 처리했을 때와 달리 각각의 농도군에서 대조군과 차이가 있었다. ATP생성량은 역시 차이가 없었다. 이상의 결과에서 납의 농도가 증가함에 따라 ATP의 생성량은 변화가 없으면서 NO가 감소하는 것을 볼 때, 납에 의한 대식세포에서 NO생성의 억제기전은 수은 및 카드뮴 등과 같이 미토콘드리아에 영향을 미쳐 ATP생성이 억제됨으로 L-arginine-NO경로에서 ATP를 필요로 하는 iNOS가 작용을 못하여 NO 생성이 저하되는 기전과는 다른 기전이 있음을 보여준다. 또한 iNOS의 조효소인 세포내 GSH를 증가시키는 NAC을 전처리했을 때 NO의 생성량이 대조군 수준으로 회복되고 세포내 GSH를 감소시키는 BSO를 전처리했을 때는 오히려 NO의 생성량에 영향을 미치지 않는 납의 농도에서조차 NO 생성의 감소가 일어난 것으로 볼 때 GSH는 대식세포에서 NO생성을 저하시키는 납의 독성에 보호작용이 있음을 확인할 수 있었다.

Gossypin Protects Primary Cultured Rat Cortical Cells from Oxidative Stress- and $\beta$-Amyloid-Induced Toxicity

  • Yoon, Injae;Lee, Kwang-Heun;Choi, Jungsook
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.454-459
    • /
    • 2004
  • The present study investigated the effects of gossypin, 3,3',4',5,7,8-hexahydroxyflavone 8-glucoside, on the toxicity induced by oxidative stress or $\beta$-amyloid ($A_{\beta}$) in primary cultured rat cortical cells. The antioxidant properties of gossypin were also evaluated by cell-free assays. Gossypin was found to inhibit the oxidative neuronal damage induced by xanthinelxanthine oxidase or by a glutathione depleting agent, D,L-buthionine (S,R)-sulfoximine. In addition, gossypin significantly attenuated the neurotoxicity induced by $A_{{\beta}(25-35)}$. Furthermore, gossypin dramatically inhibited lipid peroxidation initiated by $Fe^{2+}$ and ascorbic acid in rat brain homogenates. It also exhibited potent radical scavenging activity generated from 1 ,1-diphenyl-2-picrylhydrazyl. These results indicate that gossypin exerts neuroprotective effects in the cultured cortical cells by inhibiting oxidative stress- and $A_{\beta}$-induced toxicity, and that the antioxidant properties of gossypin may contribute to its neuroprotective actions.

Up-Regulation of Glutathione Biosynthesis in NIH3T3 Cells Transformed with the ETV6-NTRK3 Gene Fusion

  • Kim, Su-Jung;Kim, Hong-Gyum;Lim, Hye-Won;Park, Eun-Hee;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.131-136
    • /
    • 2005
  • The ETV6-NTRK3 gene fusion, first identified in the chromosomal translocation in congenital fibrosarcoma, encodes a chimeric protein tyrosine kinase with potent transforming activity. ETV6-NTRK3-dependent transformation involves the joint action of NTRK3 signaling pathways, and aberrant cell cycle progression resulting from activation of Mek1 and Akt. The level of glutathione (GSH) was found to be markedly increased in ETV6-NTRK3-transformed NIH3T3 cells. The activities of the two GSH biosynthetic enzymes as well as of glutathione peroxidase, together with their mRNAs, were also higher in the transformed cells. The transformed cells were able to grow in the presence of GSH-depleting agents, whereas the control cells were not. L-Buthionine-(S,R)-sulfoximine (BSO) inhibited activation of Mek1 and Akt in the transformed NIH3T3 cells. These observations imply that up-regulation of GSH biosynthesis plays a central role in ETV6-NTRK3-induced transformation.

Effects of Oxidative Stress on the Expression of Aldose Reductase in Vascular Smooth Muscle Cells

  • Kim, Hyo-Jung;Chang, Ki-Churl;Seo, Han-Geuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.271-278
    • /
    • 2001
  • Oxidative stress and methylglyoxal (MG), a reactive dicarbonyl metabolites produced by enzymatic and non-enzymatic reaction of normal metabolism, induced aldose reductase (AR) expression in rat aortic smooth muscle cells (SMC). AR expression was induced in a time-dependent manner and reached at a maximum of 4.5-fold in 12 h of MG treatment. This effect of MG was completely abolished by cyclohemide and actinomycin D treatment suggesting AR was synthesized by de novo pathway. Pretreatment of the SMC with N-acetyl-L-cysteine significantly down-regulated the MG-induced AR mRNA. Furthermore, DL-Buthionine-(S,R)-sulfoximine, a reagent which depletes intracellular glutathione levels, increased the levels of MG-induced AR mRNA. These results indicated that MG induces AR mRNA by increasing the intracellular peroxide levels. Aminoguanidine, a scanvenger of dicarbonyl, significantly down-regulated the MG-induced AR mRNA. In addition, the inhibition of AR activities with statil, an AR inhibitor, enhanced the cytotoxic effect of MG on SMC under normal glucose, suggesting a protective role of AR against MG-induced cell damages. These results imply that the induction of AR by MG may contribute to an important cellular detoxification of reactive aldehyde compounds generated under oxidative stress in extrahepatic tissues.

  • PDF