• Title/Summary/Keyword: L-bending

Search Result 450, Processing Time 0.031 seconds

Time dependent finite element analysis of steel-concrete composite beams considering partial interaction

  • Dias, Maiga M.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Awruch, Armando M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.687-707
    • /
    • 2015
  • A finite element computer code for short-term analysis of steel-concrete composite structures is extended to study long-term effects under service loads, in the present work. Long-term effects are important in engineering design because they influence stress and strain distribution of the structural system and therefore contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two full-scale continuous composite beams previously studied by other authors. Results are given in terms of displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the structural response and also the potentiality of the present numerical code.

Life Estimation of Elevator Wire Ropes Using Accelerated Degradation Test Data (가속열화시험 데이터를 활용한 엘리베이터 와이어로프 수명 예측)

  • Kim, Seung Ho;Kim, Sang Boo;Kim, Sung Ho;Ham, Sung Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.997-1004
    • /
    • 2017
  • The life of elevator wire ropes is one of the most important characteristics of an elevator, which is closely related to the safety of users and its maintenance policy. It is not cost effective to measure the lifetime of elevator wire ropes during their use. In this study, the life estimation of elevator wire ropes (8x19W-IWRC) is considered using accelerated degradation test data. A bending fatigue tester is used to perform the accelerated degradation tests, incorporating the acceleration factor of tensile force. Assuming that the life of wire ropes is log-normally distributed, two life estimation methods are suggested and their results are compared. The first method estimates the life of wire ropes utilizing the accelerated life model with pseudo lives obtained from a linear regression model. The second method estimates the life using a logistic model based on failure probability.

Horizontal Displacement Analysis of Electric Pole from Full Scale Pull-Out Test in Softground (연약지반에 시공된 전주의 실물인장실험을 통한 수평변위분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.115-126
    • /
    • 2009
  • Many electric poles in the softground have been collapsed due to external load such as typhoon wind load. In this study, the location, numbers and depths of acnchor blocks as well as depth of poles were varied to find horizontal displacement of poles through pull-out tests. The 10 types of tests were performed, and lateral displacements showed differences depending on location, numbers and depth of poles. The bending is generated in the upper part at the initial load, but it moved to central part as load increased. The maximum horizontal displacement decreased to 1/1.6 at -0.5[m] depth of anchor block and 1.3[m] additional laying depth of poles into ground. Two anchor blocks of poles are better than one acnchor block system, but one anchor block system is recommended because difference of displacement is not too large, and constructibilty is bad due to increase of excavation for anchor blocks.

Characteristics of flexible IZO/Ag/IZO anode on PC substrate for flexible organic light emitting diodes (PC 기판위에 성막한 IZO/Ag/IZO 박막의 특성과 이를 이용하여 제작한 플렉시블 유기발광다이오드의 특성 분석)

  • Cho, Sung-Woo;Jeong, Jin-A;Bae, Jung-Hyeok;Moon, Jong-Min;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.381-382
    • /
    • 2007
  • IZO/Ag/IZO (IAI) anode films for flexible organic light emitting diodes (OLEDs) were grown on PC (polycarbonate) substrate using DC sputter (IZO) and thermal evaporator (Ag) systems as a function of Ag thickness. To investigate electrical and optical properties of IAI stacked films, 4-point probe and UV/Vis spectrometer were used, respectively. From a IAI stacked film with 12nm-thick Ag, sheet resistance of $6.9\;{\Omega}/{\square}$ and transmittance of above 82 % at a range of 500-550 nm wavelength were obtained. In addition, structural and surface properties of IAI stacked films were analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscopy), respectively. Moreover, IAI stacked films showed dramatically improved mechanical properties when subjected to bending both as a function of number of cycles to a fixed radius. Finally, OLEDs fabricated on both flexible IAI stacked anode and conventional ITO/Glass were fabricated and, J-V-L characteristics of those OLEDs were compared by Keithley 2400.

  • PDF

Manufacture of Black Color Zirconia Ceramics Used by Eco-Friendly Materials (친환경 재료를 사용한 흑색 지르코니아 세라믹스 제조)

  • Joo, In-Don;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.685-689
    • /
    • 2011
  • The goal of this investigation was to produce a zirconia-family black ceramics that has enhanced functionality and reliability. Color zirconia ceramics have been produced by adding pigments. Pigments cause structural defects within zirconia and result in a drop in physical properties. Using environmentally friendly rice husk, we produced a black zirconia that is free of structural defects. In optimal firing conditions for black zirconia the calcining temperatures of the molding product are changed from $400^{\circ}C$ to $1200^{\circ}C$, and the firing temperatures are changed from $1400^{\circ}C$ to $1600^{\circ}C$. Color of testing the specimens was analyzed using Ultraviolet (UV) spectroscopy. Scanning Electron Microscope (SEM), EDAX (EDX), and Fourier transform infrared spectroscopy (FT-IR) analyses were carried out in order to examine impregnation properties and crystal phases. Universial Test Machine (UTM) was used to measure the flexual strength as well as the compressive strength. From experimental results, it was found that in optimal firing conditions the sample was calcined from $1000^{\circ}C$ to $1500^{\circ}C$. Commission internationalde I'Edairage (CIE) values of manufactured black zirconia color were $L^*$ = 29.73, $a^*$ = 0.23, $b^*$ = -2.68. The bending strength was 918 MPa and the compressive strength was 2676 MPa. These strength values are similar to typical strength values of zirconia, which confirms that carbon impregnation did not influence physical properties.

Influence of stiffened hangers on the structural behavior of all-steel tied-arch bridges

  • Garcia-Guerrero, Juan M.;Jorquera-Lucerga, Juan J.
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.479-495
    • /
    • 2019
  • In tied-arch bridges, the way the arch and the deck are connected may become crucial. The deck is usually suspended from hangers made out of steel pinned cables capable of resisting axial forces only. However, a proper structural response may be ensured by fixing and stiffening the hangers in order to resist, additionally, shear forces and bending moments. Thus, this paper studies the effect of different pinned and stiffened hanger arrangements on the structural behavior of the tied-arch bridges, with the intention of providing designers with useful tools at the early steps of design. Longitudinally and transversally stiffened hangers (and the effect of hinges at the hangers and their locations) are studied separately because the in-plane and the out-of-plane behavior of the bridge are uncoupled due to its symmetry. As a major conclusion, regarding the in-plane behavior, hangers composed of cables (either with vertical, $Nielsen-L\ddot{o}hse$ or network arrangements) are recommended due to its low cost and ease of erection. Alternatively, longitudinally stiffened hangers, fixed at both ends, can be used. Regarding the out-of-plane behavior, and in addition to three-dimensional arrangements of cables, of limited effectiveness, transversally stiffened hangers fixed at both ends are the most efficient arrangement. A configuration almost as efficient and, additionally, cheaper and easier to build can be achieved by locating a hinge at the end corresponding to the most flexible structural element (normally the arch). Its efficiency is further improved if the cross-section tapers from the fixed end to the pinned end.

Lateral Earth Pressures and Displacements through Full Scaled Lateral Loading Test of Concrete Electric Pole Embedded in Ground (지중에 근입된 콘크리트전주의 실물 수평재하실험에 의한 수평토압과 변위특성)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.43-51
    • /
    • 2011
  • Many electric poles in the softground have been collapsed due to external load. In this study, 10 types of tests were performed with variation of location, numbers and depths of anchor blocks as well as depth of poles to find horizontal earth pressure through full scale pull-out tests. The horizontal earth pressure increased with embedded depth of electric pole, and earth pressure of lower passive zone decreased. The deeper of anchor block, earth pressure of passive zone becomes less. lateral displacements showed differences depending on location, numbers and depth of poles. The bending is generated in the upper part at the initial load, but it moved to central part as load increased. The maximum horizontal displacement decreased to 1/1.6 at -0.5m depth of anchor block and 1.3m additional laying depth of poles into ground.

Structural glass panels: An integrated system

  • Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.327-332
    • /
    • 2022
  • In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.

MIG-WELDING OF MAGNESIUM ALLOYS WITH PARTICULAR CONSIDERATION OF DROP DETACHMENT

  • Wohlfahrt, H.;Rethmeier, M.;Wiesner, S.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.94-100
    • /
    • 2002
  • During the last years, great progress has been made in the fields of welding power sources and filler materials for the MIG-welding of magnesium alloys. This advice resulted in a better welding process, md, therefore, in highly improved welding results. Furthermore the gap between short-circuiting- and spray-arc-trunsfer could be closed by the triggered short-circuiting- and the short-circuiting-arc with pulse overlay. A crucial contribution to the welding process is the energy input into the filler material. Many problems result from the physical properties of magnesium, for instance its narrow interval between melting point 600$^{\circ}C$ and vaporization point 1100$^{\circ}C$. The energy input into the filler material has to be regulated in such a way that the wire will melt but not vaporize. For th is reason, special characteristics of power sources hue been examined and optimized with the help of high-speed-photographs of the welding process with particular consideration of the drop detachment. An important improvement of the weld seam profile has been achieved by using filler material of only 1.2 mm in diameter. The experiments hue been made with 2.5 mm thick extruded profiles of AZ31 and AZ6l. The results of tensile testing showed strength values of 80 to 100% of the base metal. B ending angles up to 60$^{\circ}$ have been reached. The fatigue strength under reversed bending of the examined magnesium alloys after welding reaches 50% of the strength of the base metal. When the seam reinforcement is ground of the fatigue strength can be raised up to 75% of the base metal.

  • PDF

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.