• Title/Summary/Keyword: L-arabinose

Search Result 162, Processing Time 0.02 seconds

Phosphate Uptake by Acinetobacter lwoffi PO8 and Accumulation (Acinetobacter lwoffi PO8에 의한 인산흡수 및 축적)

  • Yoon, Min-Ho;Ko, Jung-Youn;Choi, Woo-Young;Shin, Kong-Sik
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.163-168
    • /
    • 2000
  • To remove phosphate accumulated in the soil and water, Acinetobacter lwoffi PO8 possessing a high ability to accumulate phosphate was isolated from a active sludge. Bacterium was cultured in the liquid medium containing $150\;{\mu}g/mL$ of phosphate at $30^{\circ}C$ in different culture conditions to examine intracellular phosphate uptake. The initial pH in the range of $7.5{\sim}8.5$ was effective on the growth and phosphate uptake of the strain. Glycerol and arabinose used as a carbon sources showed 93 and 91% the phsphate uptake, respectively. Among the nitrogen sources, ammonium salt such as $NH_4NO_3$ and $(NH_4)_2SO_4$ was effectively utilized on the phosphate uptake compared with amino compounds. The rate of phosphate uptake of $NH_4NO_3$, and $(NH_4)_2SO_4$, was 95 and 96%, respectively The growth and Phosphate uptake ability in the strain were significantly promoted when metal ions were added in the medium; $Co^{2+}$, however, was not utilized by the strain. The capacity of phosphate uptake was enhanced to $10{\sim}20%$ when arginine, methionine, or lysine was added. Using $^{32}P$ to examine the uptake Pattern of intracellular phosphate, experiment result showed that polyphosphate was largely found in the fraction of intracellular inorganic phosphate of Acinetobacter lwoffi PO8.

  • PDF

Hydrolysis of Arabinoxylo-oligosaccharides by α-ʟ-Arabinofuranosidases and β-ᴅ-Xylosidase from Bifidobacterium dentium

  • Lee, Min-Jae;Kang, Yewon;Son, Byung Sam;Kim, Min-Jeong;Park, Tae Hyeon;Park, Damee;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.187-194
    • /
    • 2022
  • Two α-ʟ-arabinofuranosidases (BfdABF1 and BfdABF3) and a β-ᴅ-xylosidase (BfdXYL2) genes were cloned from Bifidobacterium dentium ATCC 27679, and functionally expressed in E. coli BL21(DE3). BfdABF1 showed the highest activity in 50 mM sodium acetate buffer at pH 5.0 and 25℃. This exo-enzyme could hydrolyze p-nitrophenyl arabinofuranoside, arabino-oligosaccharides (AOS), arabinoxylo-oligosaccharides (AXOS) such as 32-α-ʟ-arabinofuranosyl-xylobiose (A3X), and 23-α-ʟ-arabinofuranosyl-xylotriose (A2XX), whereas hardly hydrolyzed polymeric substrates such as debranched arabinan and arabinoxylans. BfdABF1 is a typical exo-ABF with the higher specific activity on the oligomeric substrates than the polymers. It prefers to α-(1,2)-ʟ-arabinofuranosidic linkages compared to α-(1,3)-linkages. Especially, BfdABF1 could slowly hydrolyze 23,33-di-α-ʟ-arabinofuranosyl-xylotriose (A2+3XX). Meanwhile, BfdABF3 showed the highest activity in sodium acetate at pH 6.0 and 50℃, and it has the exclusively high activities on AXOS such as A3X and A2XX. BfdABF3 mainly catalyzes the removal of ʟ-arabinose side chains from various AXOS. BfdXYL2 exhibited the highest activity in sodium citrate at pH 5.0 and 55℃, and it specifically hydrolyzed p-nitrophenyl xylopyranoside and xylo-oligosaccharides (XOS). Also, BfdXYL2 could slowly hydrolyze AOS and AXOS such as A3X. Based on the detailed hydrolytic modes of action of three exo-hydrolases (BfdABF1, BfdABF3, and BfdXYL2) from Bf. dentium, their probable roles in the hemiceullose-utilization system of Bf. dentium are proposed in the present study. These intracellular exo-hydrolases can synergistically produce ʟ-arabinose and ᴅ-xylose from various AOS, XOS, and AXOS.

Studies on the Characteristics of Extractives in Japanese Larch (Larix leptolepis Gordon) Grown in Korea (낙엽송(落葉松) 추출성분(抽出成分) 이용(利用)에 관(關)한 기초연구(基礎硏究))

  • Cho, Nam-Seok;Lee, Jong-Yoon;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.12-21
    • /
    • 1982
  • Red pine and Japanese larch (Larix leptolepis Gordon) grown in Korea have been the main species of coniferous resources in Korea. Especially, planting area of Japanese larch has been increased continueously in the recent years due to its superior plant type and rapid growth rate and its stocks reached approximately 4.32 million cubic meters at the present time. Although many research works have been done for the utilization of the larch wood in various ways, still many problems are existed in its chemical applications due to a large proportion of soluble extractives. In this study, chemical composition of larch extractives and chemical structure of its major component were analyzed. In order to identify the basic structure of major component, gas-liquid chromatography for separation of some completely methylated alditols as their acetates on a 3% - ECNSS-M on Gas Chrom Q. column was used. Proportion of extractives of Japanese larch wood was higher than that of other conifers and major component of the soluble extractives was arabinogalactan, a schematic structural formula which was presented in Figure 2. The molar ratio of arabinose and galactose was 1:4.5. The main chain of arabinogalactan was composed of 1,3 linked ${\beta}$-D-galactopyranose residues, each of which carried a side chain, attached to the C-6 positions. The exact nature of all of the side chains is not known, but the majority of these side chain was composed of 1, 6 linked ${\beta}$-D-galactopyranose residues, with 2~3 such units present per average chain. Some of the galactose units in the main chain had a residue of 3 - 0 - ${\beta}$-L-arabinopyranosyl-L-arabinofuranose. In addition, a few terminal residues of D-glucuronic acid also was confirmed, attached to C-6 position of the D-galactopyranose residue. It could concluded that the main structure of highly branched arabinogalactan from Japanese larch extractive was essentially the same as those of the other larch species.

  • PDF

Characterization of D-Xylose Isomerase from Streptomyces albus (Stleptomyces albus의 D-Xylose Isomerase의 성질에 관하여)

  • 김영호;하영칠
    • Korean Journal of Microbiology
    • /
    • v.16 no.2
    • /
    • pp.47-61
    • /
    • 1978
  • Strptomyces albus T-12 which ahd been isolated and identified in the laboratory, was selected for the studies on the cultural conditions on the production of D-xylose iosmerase and the enzymological characteristics using the partially purified enzyme. The best results in the enzyme production came from D-xylose medium than wheat bran. The divalent metla ions as $Co^{2+},\;Fe^{2+},\;Zn^{2+}\;and\;Cu^{2+}$ retard or inhibit the cell-growth at the early stages of mycelia propagations, and T-12 strain is especially sensitive to $Co^{2+}$. After 60 hours of shaking cultivation at $30^{\circ}C$ and 200 rpm, a maximum enzyme activitz, 0.49 enzyme units, was obtained. Cell-free enzyme obtained from mycelia heat-treated in the prescence of 0.5mM $Co^{2+}$, showed a 2.4-fold increase in specific than the enzyme from untreated mycelia. The specific activity of the purified enzyme through Sephadex G-150 columm showed 180 fold to the crude enzyme. The effective activators of the enzyme appeared to be $Mg^{2+}\;and\;Co^{2+}$ ions, and it exhibited the maximal enzyme activity showed at pH 7.0 and at tempersture around $80^{\circ}C$ when $Mg^{2+}\;and\;Co^{2+}$ ions were added. The enzyme isomerized D-glucose, D-xylose, D-ribose, L-arabinose, D-mannose, and L-rhamnose in the present of $Mg^{2+}\;and\;Co^{2+}$ ions as an activatiors. $Mg^{2+}\;and\;Co^{2+}$ ions were non-competitively bound at different allosterix sites of enzyme molecule. $Mg^{2+}(5mM)\;or\;Co^{2+}(1.0mM)$ protected against the thermal denaturations of the enzyme activities. The michelis constant(Km) and $V_{max}$ values of the emzyme for D-glucose and D-xylose were 0.52M, $2.12{\mu}moles/ml{\cdot}min.\;and\;0.28M,\;0.65moles/ml{\cdot}min.$, respectively.

  • PDF

Characterization of polysaccharide A-1 from Opuntia ficus-indica and it's protection effect on alcoholic induced hepatic oxidative stress (Opuntia ficus-indica 다당 A-1의 특성 및 알코올유도 간 산화스트레스의 보호 효과)

  • Ryu, Il-Hwan;Kwon, Ji-Wung;Lee, Eoh-Jin;Yun, Young-Gab;Kwon, Tae-Oh
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.163-174
    • /
    • 2009
  • Reactive oxygen species(ROS) can induce hepatotoxicity and trigger apoptosis in the liver. In this study, we investigated the sulfated polysaccharide A-1 from Opuntia ficus-indica against alcoholic oxidative stress in human liver Hep G2 cell. An antioxidant substance A-1 obtained from the enzymatic extract of Opuntia ficus-indica fruit was purified by DEAE-cellulose ion exchange and sephadex G-100 gel permeation chromatography. The purification yield and molecular weight were 14.3% and 1.8 KDa, respectively. The A-1 predominately contained arabinose, galactose, rhamnose and also sulfate group. The structure of A-1 was investigated by periodate oxidation, FT-IR spectroscopy, $^1H$-NMR spectroscopy. The A-1 mainly composed of alternating unit of ${\rightarrow}4$)-$\alpha$-L- Rapp-2-$SO_3^-$-$\alpha$-L-Galp-($1{\rightarrow}$ and branched linkage of $\beta$-D-Arbp- ($5{\rightarrow}$. The antioxidative activity was measured using the SOD, CAT activity and GSH assay, respectively. The expression of Nrf2 protein was analyzed by western blotting. The viable cell count analyzed by autofluorescence. Oxidative stress induced by ethanol(1 M) were dramatically reduced by A-1 treatment. A-1 also prevented cell death induced by oxidative stress. It also increased expression Nrf2 protein level. We concluded that sulfated polysaccharide A-1 from Opuntia ficus-indica effectively protect Hep G2 liver cell from alcoholic oxidative stress.

  • PDF

A New Strategy to Improve the Efficiency and Sustainability of Candida parapsilosis Catalyzing Deracemization of (R,S)-1-Phenyl-1,2-Ethanediol Under Non-Growing Conditions: Increase of NADPH Availability

  • Nie, Yao;Xu, Yan;Hu, Qing Sen;Xiao, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • Microbial oxidoreductive systems have been widely used in asymmetric syntheses of optically active alcohols. However, when reused in multi-batch reaction, the catalytic efficiency and sustainability of non-growing cells usually decreased because of continuous consumption of required cofactors during the reaction process. A novel method for NADPH regeneration in cells was proposed by using pentose metabolism in microorganisms. Addition of D-xylose, L-arabinose, or D-ribose to the reaction significantly improved the conversion efficiency of deracemization of racemic 1-phenyl-1,2-ethanediol to (S)-isomer by Candida parapsilosis cells already used once, which afforded the product with high optical purity over 97%e.e. in high yield over 85% under an increased substrate concentration of 15 g/l. Compared with reactions without xylose, xylose added to multi-batch reactions had no influence on the activity of the enzyme catalyzing the key step in deracemization, but performed a promoting effect on the recovery of the metabolic activity of the non-growing cells with its consumption in each batch. The detection of activities of xylose reductase and xylitol dehydrogenase from cell-free extract of C. parapsilosis made xylose metabolism feasible in cells, and the depression of the pentose phosphate pathway inhibitor to this reaction further indicated that xylose facilitated the NADPH-required deracemization through the pentose phosphate pathway in C. parapsilosis. moreover, by investigating the cofactor pool, the xylose addition in reaction batches giving more NADPH, compared with those without xylose, suggested that the higher catalytic efficiency and sustainability of C. parapsilosis non-growing cells had resulted from xylose metabolism recycling NADPH for the deracemization.

Extraction of Liberated Reducing Sugars from Rapeseed Cake via Acid and Alkali Treatments (산 및 알칼리 처리에 의한 유채박의 유리당 추출)

  • Jeong, Han-Seob;Kim, Ho-Yong;Ahn, Sye-Hee;Oh, Sei-Chang;Yang, In;Choi, In-Gyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1575-1581
    • /
    • 2011
  • Rapeseed cake, which is the organic waste remaining after rapeseed oil production, is readily available and considered an ecologically-friendly resource with very low cost and high dietary fiber content. This research was carried out for two reasons. First, it was done to analyze the liberated reducing sugar content of rapeseed cake. Second, it was done to investigate the effects on the sugar yield of the various concentrations of acidic and alkaline catalysts used for the hydrolysis of rapeseed cake and the concentrations of rapeseed cake in each catalyst. Several amounts of ground rapeseed cake, 0.5 g, 1 g, and 2 g, were put into 100 mL of catalysts such as sulfuric acid (0.5~2%), hydrochloric acid (0.5~2%), and sodium hydroxide (0.5~2%). Then they were hydrolyzed for 5 min at 121$^{\circ}C$. After hydrolysis, HPLC equipped with an RI detector was used to analyze liberated reducing sugars such as sucrose, glucose, galactose, fructose, and arabinose separated from rapeseed cake. The degradation rate of rapeseed cake was the highest in hydrochloric acid. As the catalyst concentrations used for hydrolysis of rapeseed cake increased, the degradation rate of rapeseed cake also significantly increased. Total reducing sugar content was the highest in hydrochloric acid, and it increased with the increase of catalyst concentrations. However, as the amount of rapeseed cake increased, the total reducing sugar content decreased, exceptionally sucrose in the case of sodium hydroxide.

Physicochemical Characteristics of Black Garlic (Allium sativum L.) (흑마늘의 이화학적 특성)

  • Choi, Duk-Ju;Lee, Soo-Jung;Kang, Min-Jung;Cho, Hee-Sook;Sung, Nak-Ju;Shin, Jung-Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.465-471
    • /
    • 2008
  • Physicochemical characteristics of black garlic were analyzed. Colorimetry measurement showed that the black garlic, compared with fresh and steamed garlics, was the highest in a value and the lowest in L and b values. Crude lipid, crude protein, and total sugars were the highest in black garlic, which was followed by steamed and fresh garlic. On the other hand, moisture content was the lowest in the black garlic and the highest in the fresh garlic. The pH of garlics was ca. 6.8, 6.5, and 4.4 in fresh, steamed, and black garlic, respectively, which indicated that garlics tended to be acidified with the thermal processing. Total pyruvate and total thiosulfinates were the lowest in steamed garlic ($77{\mu}mol$/g and 0.07 OD/g for each) and the highest in black garlic ($278{\mu}mol$/g and 0.77 OD/g). Arabinose and galactose were detected only in black garlic and their contents were 1.6 and 13 mg/100 g, respectively. Free sugars such as glucose, sucrose and fructose were the highest in the order of fresh, steamed, and black garlic. Potassium was a predominant mineral in all garlics, constituting 76% of total minerals. Glutamic acid, arginine, and aspartic acid were the major composition amino acids in all garlics, regardless of processing conditions. 15 kinds of free amino acids were detected in fresh and steamed garlic, while five more free amino acids, O-phosphoethanolamine, and urea were additionally detected in black garlic.

Acceleration of Mycelial growth of Lentinus edodes in Coniferous Sawdust (침엽수 톱밥에서 표고 균사생장 촉진에 관한 연구)

  • Park, Kyung-Mok;Kim, Dong-Chan;Lee, Jong-Yoon;Yang, Jae-Kyung;You, Chang-Hyun;Chung, Won-Il
    • The Korean Journal of Mycology
    • /
    • v.22 no.3
    • /
    • pp.222-228
    • /
    • 1994
  • In Lentinus edodes(oak mushroom) cultivation, commonly are logs and sawdusts of oak and some other broadleaved tree species used. Recently oak trees have been substantially diminished due to extensive logging. Thus, to develop comparable synthetic formula using other tree species for the cultivation of Lentinus edodes, we investigated the effect of various nutrients and pretreatment on L. edodes mycelial growth in coniferous sawdusts(i.e., Pine and Larch). We found that 1.5 hr pretreatment of sawdust with hot water and adding 10% rice bran, 3% charcoal, 0.02% $NH_4CI$ and 0.5-1% lignosulfornic acid were effective for the growth of L. edodes in pine sawdust media. In larch sawdust pretreatment with acetone for one hr and adding 20% rice bran, 3% charcoal and 0.02% $NH_4CI$ increased L. edodes mycelial growth. We also analyzed the components of oak and coniferous sawdusts and found oak has higher content of xylose and lower content of lignin, arabinose and mannose than conifers. Rice bran, compared with BITEL(HOKKEN Co.) known for better commercial substitute for rice bran, has lower content of xylose and galactose, but the similar C/N ratio.

  • PDF

Studies for Component Analysis and Antioxidative Evaluation in Acorn Powders (도토리 가루의 성분분석과 항산화능 평가)

  • Shim, Tae-Heum;Jin, Ying-Shan;Sa, Jae-Hoon;Shin, In-Cheol;Heo, Seong-Il;Wang, Myeong-Hyeon
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.800-803
    • /
    • 2004
  • Chemical components and physiological activities of acorn powders were investigated to develop functional food. Proximate components were 87.29% crude fiber, 1.18% crude fat, 0.84% crude protein, and 0.12% crude ash. Potassium was most predominant mineral, followed by phosphorus, calcium, magnesium, and sodium. Contents of unsaturated fatty acids, such as oleic, linoleic, and linolenic acids, were higher than those of saturated fatty acids. Water and 75% ethanol extracts of acorn powders showed higher absorbency at 285 nm. Water and 75% ethanol extracts exhibited antioxidative activity with $IC_{50}$ of 19.0 and $21.4\;{\mu}g/mL$, respectively, indicating they are the major biological component in acorn powders. Results suggest water extract of acorn can be used as new material for natural antioxidant and functional food.