• Title/Summary/Keyword: L-M Cycle

Search Result 547, Processing Time 0.031 seconds

Anti-obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to adipogenesis and cell cycle arrest in 3T3-L1 adipocytes (Adipogenesis관련 유전자발현감소와 Cell Cycle Arrest를 통한 EGCG와 Glucosamine-6-Phosphate의 Anti-Obesity 효과)

  • Kim, Kkot Byeol;Jang, Seong hee
    • Journal of Nutrition and Health
    • /
    • v.47 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Purpose: Several studies have proven that EGCG, the primary green tea catechin, and glucosamine-6-phosphate (PGlc) reduce triglyceride contents in 3T3-L1 adipocytes. The objective of this study is to evaluate the combination effect of EGCG and PGlc on decline of accumulated fat in differentiated 3T3-L1 adipocytes. Methods: EGCG and PGlc were administered for 6 day for differentiation of 3T3-L1 adipocytes. Cell viability was measured using the CCK assay kit. In addition, TG accumulation in culture 3T3-L1 adipocytes was investigated by Oil Red O staining. We examined the expres-sion level of several genes and proteins associated with adipogenesis and lipolysis using real-time RT-PCR and Western blot analysis. A flow cytometer Calibar was used to assess the effect of EGCG and PGluco on cell-cycle progression of differentiating 3T3-L1 cells. Results: Intracelluar lipid accumulation was significantly decreased by combination treatment with EGCG $60{\mu}M$ and PGlc $200{\mu}g/m$ compared with control and EGCG treatment alone. In addition, use of combination treatment resulted in directly decreased expression of $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP1. In addition, it inhibited adipocyte differentiation and adipogenesis through downstream regulation of adipogenic target genes such as FAS, ACSL1, and LPL, and the inhibitory action of EGCG and PGlc was found to inhibit the mitotic clonal expansion (MCE) process as evidenced by impaired cell cycle entry into S phase and the S to G2/M phase transition of confluent cells and levels of cell cycle regulating proteins such as cyclin A and CDK2. Conclusion: Combination treatment of EGCG and PGlc inhibited adipocyte differentiation through decreased expression of genes related to adipogenesis and adipogenic and cell cycle arrest in early stage of adipocyte differentiation.

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

Induction of cell cycle arrest and apoptosis by an indirubin analog, a CDK inhibitor, in human lung cancer cells

  • Lee, Jong-Won;Moon, Myung-Ju;Kim, Yong-Chul;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.91.2-91.2
    • /
    • 2003
  • Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation. Inhibition of CDK is a promising target in development of anti-cancer agents. An indirubin analog (AGM01l), a CDK inhibitor, is a synthetic compound that inhibits human cancer cell growth in vitro. AGM01l showed a potent cytotoxicity in cultured human cancer cell lines (IC$\sub$50/ = 5.43 ${\mu}$M for A549, human colon cancer cell; IC$\sub$50/ = 1.21 ${\mu}$M for SNU-638, human stomach cancer cell; IC$\sub$50/ 9.23 ${\mu}$M for HL-60, human leukemia cell). (omitted)

  • PDF

Tetrazolium Violet Induced Apoptosis and Cell Cycle Arrest in Human Lung Cancer A549 Cells

  • Zhang, Xiao-Hong;Zhang, Nan;Lu, Jian-Mei;Kong, Qing-Zhong;Zhao, Yun-Feng
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Tetrazolium violet is a tetrazolium salt and has been proposed as an antitumor agent. In this study, we reported for the first time that tetrazolium violet not only inhibited human lung cancer A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. The results showed that tetrazolium violet significantly decreased the viability of A549 cells at $5-15{\mu}M$. Tetrazolium violet -induced apoptosis in A549 cells was confirmed by H33258 staining assay. In A549, tetrazolium violet blocked the progression of the cell cycle at G1 phase by inducing p53 expression and further up-regulating p21/WAF1 expression. In addition, an enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as caspase, were responsible for the apoptotic effect induced by tetrazolium violet. The conclusion of this study is that tetrazolium violet induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that tetrazolium violet has strong potential for development as an agent for treatment lung cancer.

Antagonistic effects on Respiration and Photosynthesis of Chlorella cells treated with GA and IAA (Chlorella의 호흡 및 광합성에 미치는 IAA와 GA의 길항작용)

  • 채인기;정영숙;이영녹
    • Korean Journal of Microbiology
    • /
    • v.12 no.4
    • /
    • pp.188-193
    • /
    • 1974
  • Effects of GA and IAA on the respiratory and photosynthetic activity of each growth stage during the synchronous culture of Chlorella ellipsodiea, were investigated. 1) GA ($2{\times}10^{-8}M$) affected most insignificantly on the respiratory activity of the stages Dn, Da, $L_1$, $L_2$, $L_3$-cells but only at $L_4$-cells treated with IAA($10^{-3}/M$) were promoted and $L_3$, $L_4$-cells were suppressed. With the treatment of GA-IAA the effects on respiration of eah stage cells were antagonistic. 2) Photosynthetic activity treated with GA during the each stage of Chlorella cells was promoted and IAA treated-cell were suppressed. The effect of GA-IAA upon the process of life cycle was also antagonistic. 3) It was revealed that respiratory and photosynthetic activity of Chlorella cells by the treatment of GA(($2{\times}10^{-8}M$) and IAA($10{\times}^{-3}/M$) had antogonistic effects.

  • PDF

Sexual Maturity and Reproductive Cycle of Roughscale Sole Clidoderma asperrimum Cultured in Indoor Tank (실내 사육한 줄가자미(Clidoderma asperrimum)의 성 성숙과 생식주기)

  • Lim, Han Kyu;Jeong, Min Hwan;Do, Yong Hyun;Son, Maeng Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.6
    • /
    • pp.1003-1012
    • /
    • 2012
  • The gonadosomatic index (GSI), sex steroid hormones and gonadal development of roughscale sole Clidoderma asperrimum cultured in indoor tank were investigated to evaluate its sexual maturation and reproductive cycle. The highest GSI values of female and male were $6.91{\pm}4.03$ (May) and $0.16{\pm}0.08$ (August), respectively. The reproductive cycle would be classified into four successive developmental stages: growing stage (December to February), maturation stage (March to April), ripe and spawning stage (May to June), recovery and resting stage (July to November). The highest plasma testosterone (T) and estradiol-$17{\beta}$ ($E_2$) levels of female were $259.4{\pm}76.8$ and $633.3{\pm}182.5$ pg/mL, respectively in May. Also $17{\alpha}$, $20{\beta}$-dihydroxy-4-pregen-3-one ($17{\alpha}$, $20{\beta}$-OHP) levels of female peaked in April before spawning season ($244.2{\pm}42.5$ pg/mL). The highest plasma testosterone (T) and 11-ketotestosterone levels of male were $231.0{\pm}46.0$ and $273.9{\pm}54.5$ pg/mL, respectively in April. But there was no significant difference in $17{\alpha}$, $20{\beta}$-OHP.

Dispersion of Li[Ni0.2Li0.2Mn0.6]O2 Powder by Surfactant for High-power Li-ion Cell

  • Yun, Su-Hyun;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1598-1602
    • /
    • 2009
  • The particle size of Li[$Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode powder was controlled effectively by dispersion using lauric acid as a surfactant. The samples treated by lauric acid showed smaller particles of approximately half the original size compared to the particles of a pristine sample. A structural change due to the dispersion of Li[$Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ powder was not detected. The rate performance of the Li[$Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode was improved by dispersion using lauric acid, which was likely due to the decrease of the particle size. In particular, a sample dispersed pristine powder using lauric acid (L2) presented a greatly enhanced discharge capacity and capacity retention at a high C rate. The discharge capacity of a pristine sample was only 133 m$Ahg^{-1}$ (3C rate) and 96 m$Ahg^{-1}$ (12C rate) at the tenth cycle. In contrast, the L2 electrode delivered higher discharge capacities of 160 m$Ahg^{-1}$ (3C rate) and 129 m$Ahg^{-1}$ (12C rate) at the tenth cycle. The capacity retention at a rate of 12C/2C was also enhanced from ~ 45% (pristine sample) to 57% (L2) by treatment with lauric acid.

Caesalpinia sappan L. Induces G2/M Phase Cell Cycle Arrest in Human Lymphoma U937 Cells (소목(蘇木) 물추출물의 G2/M기 정지를 통한 U937세포의 성장억제 효과)

  • Jeon, Byung-Jae;Ju, Sung-Min;Yang, Hyun-Mo;Kim, Bo-Hyun;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Caesalpinia sappan L. (C. sappan) has long been used in traditional medicine as an emmenagogue, hemostatic and anti-inflammatory agent. The present study investigated the effects of water extract of C. sappan in human lymphoma U937 cells. The proliferation of U937 cells was decreased by C. sappan in a dose-dependently manner. Anti-proliferative effect of C. sappan on U937 cells was associated with G2/M phase arrest, which was mediated by regulating the expression of p21 protein. Moreover, phosphorylation of JNK and p38 was increased by C. sappan. Blockade of JNK and p38 was significantly inhibited C. sappan-induced G2/M phase arrest. Taken together, these results suggest that Anti-proliferative effect of C. sappan on U937 is assocated with G2/M phase cell cycle arrest by expression of p21 protein and, JNK and p38 activation.

Life Cycle Assessment on Pump and Treatment Remediation of Contaminated Groundwater (오염 지하수 양수 및 처리 공정에 대한 전과정평가)

  • Cho, Jong-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.405-412
    • /
    • 2011
  • Environmental impact by proposed pump and treatment remediation of groundwater contaminated with TCE over 0.6 mg/L down to 0.005 mg/L was assessed for 30 years operation in an industrial park. Total amount of groundwater treated was $2.96{\times}10^7m^3$ and the amount of TCE removed was 17.6 kg at most. The life cycle assessment was used to estimate the environmental cost and environmental benefit and their effects on the environment could be analyzed. Most of the environmental cost was accrued from electricity generation for 30 years pump operation, which includes energy consumption, resources consumption such as coal, crude oil, emission of global warming gas and acid gas into air, waste water production, and waste generation. Environmental impact could be quantified with a Life Cycle Assessment (LCA) model for soil and groundwater remediation and normalized based upon consumption and emission quantities per capita in the world. Among the normalized values, acidification material release was the most significant.

Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

  • Zhu, Jin-Hui;Hong, De-Fei;Song, Yong-Mao;Sun, Li-Feng;Wang, Zhi-Fei;Wang, Jian-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1017-1021
    • /
    • 2013
  • The cellular apoptosis susceptibility (CSE1L) gene has been demonstrated to regulate multiple cellular mechanisms including the mitotic spindle check point as well as proliferation and apoptosis. However, the importance of CSE1L in human colon cancer is largely unknown. In the present study, we examined expression levels of CSE1L mRNA by semiquantitative RT-PCR. A lentivirus-mediated small interfering RNA (siRNA) was used to knock down CSE1L expression in the human colon cancer cell line RKO. Changes in CSE1L target gene expression were determined by RT-PCR. Cell proliferation was examined by a high content screening assay. In vitro tumorigenesis was measured by colony-formation assay. Cell cycle distribution and apoptosis were detected by flow cytometric analysis. We found CSE1L mRNA to be expressed in human colon cancer cells. Using a lentivirus based RNAi approach, CSE1L expression was significantly inhibited in RKO cells, causing cell cycle arrest in the G2/M and S phases and a delay in cell proliferation, as well as induction of apoptosis and an inhibition of colony growth capacity. Collectively, the results suggest that silencing of CSE1L may be a potential therapeutic approach for colon cancer.