• Title/Summary/Keyword: L-Glutamine

Search Result 131, Processing Time 0.023 seconds

Determination of Microquantities of Ammonia by Enzymatic Analysis (효소분석법에 의한 미량암모니아의 정량)

  • 성하진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.495-500
    • /
    • 1986
  • Enzymatic micro-assay methods were studied those were capable of determining ammonia down to 10$^{-5}$M(0.01 $\mu$mole/ml) in the presence of other nitrogenous compounds such as protein and amino acid. Microquantities of ammonia (0.01-0.1 $\mu$mole) could be determined indirectly by measuring phosphorous, one of the products of the enzymatic reaction catalyzed by glutamine synthetase. In this reaction, L-glutamate, ATP and ammonium chloride were used as substrates, and phosphorous was formed in propotion to the concentration of ammonium chloride In the reaction mixture. Another procedure was examined in which glutamine synthetase reaction coupled with pyruvate kinase and lactate dehydrogenase reactions was used. One mililiter of the assay mixture contained; phosphoenol pyruvate, 3 mM, L-glutamate, 10 mM; ATP, 1mM: MgSO$_4$, 20 mM: KCl, 75mM: NADH, 0.2mM: Tris-HCl buffer(pH 7.0), 100mM; pyruvate kinase, 10 U: lactate dehydrogenase, 12 U and glutamine synthetase, 4 U. After preincubation for 20 min at 3$0^{\circ}C$, NH$_4$Cl was added and the rates of NADH oxidation were followed at 340nm. The effective range of this method was proved to be from 0.01 to 0.05 $\mu$mole/$m{\ell}$. Glutamine synthetase reaction coupled with glutamate synthase reaction could also be effectively used for determining microquantities of ammonia. The one mililiter assay mixture contained; ATP, 5mM: L-glutamate, 5mM; L-ketoglutarate, 5mM; MgCl$_2$, 15mM; NADPH, 0.15mM; Tris-HCl buffer(pH 7.0); 100mM; glutamine synthetase, 1U and glutamate synthase, 0.5U. After preincubation for 20min at 3$0^{\circ}C$ NH$_4$Cl was added and the rates of NADPH oxidation were followed at 340nm. The effective range of this procedure was appeared to be from 0.01 to 0.05$\mu$mole/$m{\ell}$.

  • PDF

Effect of Amino Acid, Polyamine, and Flavonoid on the Pollen Germination of Peach(Prunus persica SIEB under Low Temperature Conditions (아미노산, Polyamine 및 flavonoid 첨가가 복숭아 화분의 저온 발아에 미치는 영향)

  • Cheon, Beong-Duck;Choi, In-Soo;Kang, Jum-Soon
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.711-715
    • /
    • 2006
  • The objective of this study was focused on the enhancement of pollen germination frequency in peach (Prunus $persica\;_{SIEB}$) under low temperature conditions. The effect of factors such as amino acid, polyamine, and flavonoid on the pollen germination was investigated, and the results are summarized as follows. When amino acid, polyamine or flavonoid was added to the germination medium at $10^{\circ}C$, pollen germination frequency was strongly promoted. Optimum concentration of each supplement for pollen germination enhancement was $100\;mg{\cdot}L^{-1}\;H_3BO_3$, 10 mM asparagine, 10 mM glutamine, 100 mM spermine, $1000\;{\mu}M$ putrescine, and $1.0\;{\mu}M$ kaemferol. The best combination of factors in pollen germination was $100\;mg{\cdot}L^{-1}\;H_3BO_3+10\;mM$ asparagine, followed by $100\;mg{\cdot}L^{-1}\;H_3BO_310mM$ glutamine, $100\;mg{\cdot}L^{-1}\;H_3BO_3+200mM$ spermine, and 10 mM asparagine. These combinations promoted pollen germination by 18% in 'Nagasawa-Hakuho', and 19% in 'Shuho' compared to their germination percentage on the basal medium.

Effect of Glutamine on the Methotrexate Induced Gut Barrier Damage, Bacterial Translocation and Weight Changes in a Rat Model (백서에서 Methotrexate에 의하여 유발된 장관장벽손상 및 장내세균전위와 중량 변화에 대한 글루타민의 효과)

  • Kim, Eun-Jeong;Kim, Jeong-Wook
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The aim of this study was to examine whether administration of glutamine are able to prevent the methotrexate induced gut barrier damage, bacterial translocation, and weight changes. The animals with glutamine were fed with L-glutamine (1.2 and 2.4 mg/kg/day) for 7 days before methotrexate administration (20 mg/kg orally). 48 hour after methotrexate administration, intestinal permeability were measured for an assessment of the gut barrier dysfunction. Also, enteric aerobic bacterial counts, number of gram-negatives in mesenteric lymph node (MLN), liver spleen, kidney and heart were measured for an assessment of the enteric bacterial number and bacterial translocation. Amounts of food intake, body weight changes and organ weight changes of liver spleen, kidney and heart were measured. Methotrexate administration caused body and liver weight loss regardless amounts of food intakes. Methotrexate induced increasing intestinal permeability, enteric bacterial undergrowth and bacterial translocation to MLN, liver and spleen, but not kidney and heart. The supplements with glutamine reduced the intestinal permeability bacterial translocation, and not influences enteric bacterial number, and body and liver weight changes. This study suggested that glutamine might effectively reduce methotrexate induced intestinal damage and bacterial translocation, but not influence body and organ weight loss.

Ion Mobility Signatures of Glutamine-Containing Tryptic Peptides in the Gas Phase

  • Lee, Hyun Hee L.;Chae, Soo Yeon;Son, Myung Kook;Kim, Hugh I.
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.137-145
    • /
    • 2021
  • Herein we report multiple ion mobility (IM) peaks in electrospray ionization IM mass spectrometry (ESI-IM-MS) produced by glutamine residue in peptide. The mobility features of 147 peptides were investigated using ESI-IM-MS combined with liquid chromatography. Of these peptides, 66 presented multiple IM peaks, and analysis of their sequence using collision induced dissociation (CID) revealed that glutamine (Gln), as well as proline (Pro), plays a critical role in generating multiple IM peaks. Mutant-based investigations using Gln-containing peptides indicate that the side chain of Gln promotes intermolecular interactions, inducing multiple structures of the peptide ions in the gas phase. Consequently, the present study demonstrates that the distinct ion mobility signatures identified herein can potentially be used to characterize glutamine-containing peptide ions.

Effects of Glutamine Deprivation and Serum Starvation on the Growth of Human Umbilical Vein Endothelial Cells (재대정맥 내피세포의 증식에 미치는 글루타민 및 혈청 결핍의 영향)

  • Jeong, Jin-Woo;Lee, Hye Hyeon;Park, Cheol;Kim, Wun-Jae;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2013
  • Glutamine and serum are essential for cell survival and proliferation in vitro, yet the signaling pathways that sense glutamine and serum levels in endothelial cells remain uninvestigated. In this study, we examined the effects of glutamine deprivation and serum starvation on the fate of endothelial cells using a human umbilical vein endothelial cell (HUVEC) model. Our data indicated that glutamine deprivation and serum starvation trigger a progressive reduction in cell viability through apoptosis induction in HUVECs as determined by DAPI staining and flow cytometry analysis. Although the apoptotic effects were more predominant in the glutamine deprivation condition, both apoptotic actions were associated with an increase in the Bax/Bcl-2 (or Bcl-xL) ratio, down-regulation of the inhibitor of apoptosis protein (IAP) family proteins, activation of caspase activities, and concomitant degradation of poly (ADP-ribose) polymerases. Moreover, down-regulation of the expression of Bid or up-regulation of truncated Bid (tBid) were observed in cells grown under the same conditions, indicating that glutamine deprivation and serum starvation induce the apoptosis of HUVECs through a signaling cascade involving death-receptor-mediated extrinsic pathways, as well as mitochondria-mediated intrinsic caspase pathways. However, apoptosis was not induced in cells grown in glutamine- and serum-free media when compared with cells exposed to glutamine deprivation or serum starvation alone. Taken together, our data indicate that glutamine deprivation and serum starvation suppress cell viability without apoptosis induction in HUVECs.

Synthesis of Poly-$N^5$-(3-hydroxypropyl glutamine)/Poly (ethylene glycol)block Copolymer Hydrogel and Its Application to the Artificial Skin (Poly-$N^5$-(3-hydroxypropyl glutamine)/Poly (ethylene glycol)block copolymer hydrogel의 합성과 인공피부에의 응용)

  • 조종수;오상봉
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.57-62
    • /
    • 1991
  • ABA type block copolymers composed of poly($\gamma-benzyl$ L-glutamate) (PBLG) as the A component and poly (ethylene glycol) as the B component were obtained by polymerization of $\gamma-benzyl$ L-gletamate N -carboxyanhydride, initiated by amino groups at both ends of poly(ethylene glycol) . From circular dichroism measurements in ethylene dichloride solution as well as from infrared spectTa measurements in solid state, it was found that the polypep- tide block exists in the a-helical conformation, as in PBLG homopolymer. $Poly-N^5$ (3-hydroxypropyl glutamine) (PHPG)/poly(ethylene glycol)block copolymer hydrogel was obtained by the treatment of PBLG/PBG block copolymer with the mixture of 3-ammine-1-propanol and diamlnooctane. The water content of PHPG/PEG block copolymer hydrogel was about 80wt% when the concentration of crosslinking agent was below 5 mole % per polymer.

  • PDF

Effect of tissue proliferation and somatic embryo induction in Larix kaempferi following treatment with organic nitrogen sources and plant growth regulators (일본잎갈나무(Larix kaempferi) 유기질소원 및 식물생장조절물질 처리에 따른 조직증식 및 체세포배 유도 효과)

  • Kim, Yong Wook;Kim, Ji Ah;Moon, Heung Kyu;Jeong, Su Jin
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.376-379
    • /
    • 2015
  • This study was conducted to evaluate the effects of different types and concentrations of organic nitrogen sources (${\small{L}}$-Glutamine and casein hydrolysate, CH) and plant growth regulators (auxins and cytokinins) on embryogenic tissue proliferation and somatic embryo production in L. kaempferi. Overall, the highest tissue fresh weight was obtained at either 2 or 4 weeks in culture when 1,000 mg/L ${\small{L}}$-Glutamine was added to the culture medium, which showed similar results with other treatments. In experiments with different types and concentrations of plant growth regulators on somatic embryo production, the highest production (426.3/90 mg tissue) was found when 0.2 mg/L IBA was added; however, no somatic embryos were induced following treatment with 0.2 mg/L BA or Kinetin. The effect of various concentrations of IBA on somatic embryo production was also tested. The best result (303/90 mg tissue) was obtained when plants were treated with 0.2 mg/L IBA; 1.0 mg/L IBA was also effective (281/90 mg tissue). The lowest result (109.3/90 mg tissue) was obtained with 5.0 mg/L IBA.

Effects of L-glutamine supplementation on degradation rate and rumen fermentation characteristics in vitro

  • Suh, Jung-Keun;Nejad, Jalil Ghassemi;Lee, Yoon-Seok;Kong, Hong-Sik;Lee, Jae-Sung;Lee, Hong-Gu
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.422-433
    • /
    • 2022
  • Objective: Two follow-up studies (exp. 1 and 2) were conducted to determine the effects of L-glutamine (L-Gln) supplementation on degradation and rumen fermentation characteristics in vitro. Methods: First, rumen liquor from three cannulated cows was used to test L-Gln (50 mM) degradation rate and ammonia-N production at 6, 12, 24, 36, and 48 h after incubation (exp. 1). Second, rumen liquor from two cannulated steers was used to assess the effects of five levels of L-Gln including 0% (control), 0.5%, 1%, 2%, and 3% at 0, 3, 6, 12, 24, 36, and 48 h after incubation on fermentation characteristics, gas production, and degradability of nutrients (exp. 2). Results: In exp. 1, L-Gln degradation rate and ammonia-N concentrations increased over time (p<0.001). In exp. 2, pH was reduced significantly as incubation time elapsed (p<0.001). Total gas production tended to increase in all groups as incubation time increased. Acetate and propionate tended to increase by increasing glutamine (Gln) levels, whereas levels of total volatile fatty acids (VFAs) were the highest in 0.5% and 3% Gln groups (p<0.001). The branched-chain VFA showed both linear and quadratic effects showing the lowest values in the 1% Gln group particularly after 6 h incubation (p<0.001). L-Gln increased crude protein degradability (p<0.001), showing the highest degradability in the 0.5% Gln group regardless of incubation time (p<0.05). Degradability of acid detergent fiber and neutral detergent fiber showed a similar pattern showing the highest values in 0.5% Gln group (p<0.10). Conclusion: Although L-Gln showed no toxicity when it was supplemented at high dosages (2% to 3% of DM), 0.5% L-Gln demonstrated the positive effects on main factors including VFAs production in-vitro. The results of this study need to be verified in further in-vivo study.

Purification and Some Properties of Glutamine Synthetase lsolated from Chlorobium limicola f. thiosulfatophilum NCIB 8327 (Chlorobium limicola f. thiosulfatophilum NCIB 8327로부터 Glutamine Synthetase의 분리 및 특성분석)

  • Na, Jong-Uk;Kim, Ji-Yoon;Yoon, Hwan;Kang, Sa-Ouk
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.564-569
    • /
    • 1992
  • A green sulfur bacterium, Chlorobium limicola f. thiosulfatophilum NCIB 8327, was grown in modified Pfennig's medium including glu1amate as a nitrogen source. Glutamine synthetase was isolated through a series of ultracentrifugation. DEAE-Sepharose CL-6B ion exchange chromatography. Sephacryl S-300 gel permeation chromatography, and preparative HPLC. The recovery and purification fold of the enzyme were 2% and 46.3. respectively. The isolated enzyme was homogeneous on UV-Visible spectrum and polyacrylamide gel electrophoretogram. The relative molecular mass of the native enzyme was estimated to be 280,000 by gel permeation chromatography. The enzyme consisted of ten subunits with relative similar molecular mass. 30.000. which was estimated by SDS-polyacrylamide gel electrophoresis. The optimal temperature and pH of the enzyme were $30^{\circ}C$ and 7.0. Km values were 27.9 mM for L-glutamine and 0.92 mM for hydroxylamine-HCr. The enzyme activity was inhibited by alanine. glycine. and tryptophan considerably, but was not affected by asparagine, lysine. leucine. and valine.

  • PDF

Effects of Biocom as a Replacement of Glutamine on Performance and Blood Biochemical Indexes of Early Weaned Piglets

  • Zhou, R.Y.;Peng, J.;Liu, Z.L.;Fang, Z.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.872-876
    • /
    • 2006
  • The objective of this study was to evaluate Biocom (a protein source containing a high level of glutamine and alanyl-glutamine) as a replacement for glutamine (Gln) in nursery pig diets. Forty-two pigs (fourteen pigs per treatment) weaned at 28 d of age were used in a 28-d performance trial using three dietary treatments: control (no Gln), control supplemented with Gln or Biocom. The control diet was composed of corn, soybean meal, whey and fish meal. Individual body weight, pen feed disappearance and diarrhea were monitored. On d 0, 2, 7 and 14 postweaning, respectively, five pigs per treatment were selected and bled from the anterior vena cava to obtain five replicate samples of blood on each dietary treatment for determination of blood biochemical index. Dietary supplementation of Gln and Biocom did not influence performance, plasma Gln and total serum protein concentration (p>0.05). However, the addition of Gln and Biocom could prevent serum urea nitrogen and serum cortisol from increasing on d 2 postweaning (p<0.05). There were no significant differences (p>0.05) in any of the examined parameters between Gln- and Biocom-supplemented diets. In conclusion, dietary Gln did not influence the performance of early-weaned piglets owing to the complex diet containing whey, but could prevent the increase of serum urea and cortisol. Biocom could be used as a replacement for free pure Gln without any negative effect on early-weaned piglets.