• Title/Summary/Keyword: L-G-L(Liquid-Gas-Liquid)

Search Result 112, Processing Time 0.028 seconds

Mass Distribution and Spray Characteristics to Liquid-Gas Line Selection of Unlike Triplet Impinging Injector (비동질 3중 충돌형 인젝터의 기체-액체 라인 선택에 따른 분무특성)

  • Lee, I.C.;Lee, C.J.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.205-211
    • /
    • 2006
  • Impinging angle, impinging distance, length eve. diameter and injection pressure of a triplet injector were tested to evaluate the spray characteristics injected by liquid/gas combinations. Two different kinds of unlike triplet sprays were produced by changing the gas and liquid feed lines. One was the G-L-G(Gas-Liquid-Gas) type, and the other was L-G-L(Liquid-Gas-Liquid) type. Spray angles were wider with the G-L-G type than with L-G-L type. Mass distributions in spray were obtained with a, mechanical patternator. Mass distributions were not circular but elliptical distributions. When the range of mechanical patternator to injector decreased, mass distributions were more concentrated in the center region.

  • PDF

Effects of Ethanol Mixing Ratio on Spray Characteristics of Triplet Impinging Injector (에탄올 혼합비에 따른 3중 충돌형 인젝터의 분무특성)

  • Lee, In-Chul;Kim, Jong-Hyun;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • Spray characteristics of a unlike triplet injector were investigated experimentally. Spray images and SMD of droplet were measured to evaluate the spray characteristics injected by liquid/gas combinations. G-L-G(Gas-Liquid-Gas), L-G-L(Liquid-Gas-Liquid) type of injector were used by changing the gas and liquid feed lines. The SMD graph shows that the droplet sizes decrease in the out of radial direction at a fixed gas Reynolds number. The SMD value of decreasing tendency shows that the more ethyl alcohol ratio increase, the more SMD value decrease.

  • PDF

Solid Circulation Rate in a 3-phase (gas/liquid/solid) Viscous Circulating Fluidized Bed

  • Jang, Hyung Ryun;Yoon, Hyuen Min;Yang, Si Woo;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.186-190
    • /
    • 2018
  • For the first time, the characteristics of solid circulation rate ($G_S$) were investigated in a three-phase (gas-liquid-solid) viscous circulating fluidized bed (TPCFB). The solid circulation rate was controlled separately by adjusting the experimental apparatus as well as operating variables. Effects of primary and secondary liquid velocities ($U_{L1}$ and $U_{L2}$), gas velocity ($U_G$), particle size ($d_p$), height of particles piled up in the solid recycle device (h), and viscosity of continuous liquid media (${\mu}_L$) on the value of $G_S$ were determined. The experimental results showed that the value of $G_S$ increased with increases in the values of $U_{L1}$, $U_{L2}$, h and ${\mu}_L$, while it decreased with increasing $U_G$ and $d_p$ in TPCFBs with viscous liquid media. The values of $G_S$ were well correlated in terms of dimensionless groups within this experimental conditions.

Determination of Normal Saturated- and Polycyclic Aromatic Hydrocarbons in the River Water of Bangladesh by Liquid-Liquid Extraction and Gas Chromatography

  • Mottaleb, M.A.;Sarma, D.K.;Sultana, S.;Husain, M.M.;Alam, S.M.M.;Salehuddin, S.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.99-105
    • /
    • 2003
  • A liquid-liquid extraction followed by evaporative concentration method was used to determine the concentration of normal, or straight chain, saturated hydrocarbons (NSH) $(C_{10}\;to\;C_{24})$ and polycyclic aromatic hydrocarbons (PAH) here defined as: fluorene, anthracene, pyrene, chrysene and perylene, in the Buriganga River water of Bangladesh. Samples were collected from 5 and 25 cm depth of water at the southern, middle and northern parts of the river at Postogolla, Sadarghat and Sowarighat stations. Hydrocarbons were extracted from 450 mL of water into 75 mL n-hexane and then concentrated into 1 or 2 mL solution by evaporation. These solutions were analyzed by gas chromatography. The highest and lowest concentrations were determined as $257\;{\mu}gL^{-1}\;for\;C_{13}\;and \;0.24\;{\mu}g\;L^{-1}\;for\;C_{22}$ at 5 ㎝ depth of water, at the northern part of the Sowarighat and southern part of the Postogolla, respectively. This method could allow the analysis of water for $C_{22}$ as low as $0.24\;{\mu}g\;L^{-1}$.

Preparation of PVDF Hollow Fiber Membrane and Absorption of SO2 from Flue Gas Using Bench Scale Gas-Liquid Contactor (PVDF 중공사막 제조 및 벤치규모 기-액 접촉기를 이용한 SO2 흡수특성)

  • Park, Hyun-Hee;Jo, Hang-Dae;Kim, In-Won;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.521-528
    • /
    • 2008
  • The micro-porous asymmetric PVDF hollow fiber membranes for gas-liquid contactor were prepared by the dry-jet wet phase inversion process and the characteristics of hollow fiber membranes were evaluated by the gas permeation method and scanning electron microscope. The chemical absorbent for removal of $SO_2$ gas was sodium hydroxide at bench scale hollow fiber membrane contactor. The experiments were performed in a counter-current mode of operation with gas in the shell side and liquid in the fiber lumen of the module to examine the effect of various operating variables such as concentration of absorbent, gas flow rate, L/G ratio and concentration of inlet $SO_2$ gas on the $SO_2$ removal efficiency using PVDF hollow fiber membrane contactor. Membrane mass transfer coefficient($k_m$) was calculated by mathematical modeling. The volumetric overall mass transfer coefficient increased with increasing the concentration of absorbent and L/G ratio. The increase of the absorbent concentration and L/G ratio not only provides more sufficient alkalinity but also decreases liquid phase resistance. The volumetric overall mass transfer coefficient increased with increasing gas flow rate due to decreasing the gas phase resistance.

Effects of Column Diameter on the Holdups of Bubble, Wake and Continuous Liquid Phase in Bubble Columns with Viscous Liquid Medium (점성액체 기포탑에서 탑의 직경이 기포, wake 및 연속액상 체류량에 미치는 영향)

  • Lim, Dae Ho;Jang, Ji Hwa;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.582-587
    • /
    • 2011
  • Holdup characteristics of bubble, wake and continuous liquid phases were investigated in bubble columns with viscous liquid media. Effects of column diameter(0.051, 0.076, 0.102 and 0.152 m ID), gas velocity($U_G$=0.02~0.16 m/s) and liquid viscosity(${\mu}_L$=0.001~0.050 $Pa{\cdot}s$) of continuous liquid media on the holdups of bubble, wake and continuous liquid phases were discussed. The three phase such as bubble, wake and continuous liquid phases were classified successfully by adapting the dual electrical resistivity probe method. Compressed filtered air and water or aqueous solutions of CMC(Carboxy Methyl Cellulose) were used as a gas and a liquid phase, respectively. To detect the wake as well as bubble phases in the bubble column continuously, a data acquisition system(DT 2805 Lab Card) with personal computer was used. The analog signals obtained from the probe circuit were processed to produce the digital data, from which the wake phase was detected behind the multi-bubbles as well as single bubbles rising in the bubble columns. The holdup of bubble and wake phases decreased but that of continuous liquid media increased, with an increase in the column diameter or liquid viscosity. However, the holdup of bubble and wake phases increased but that of continuous media decreased with an increase in the gas velocity. The holdup ratio of wake to wake to bubble phase decreased with an increase in the column diameter or gas velocity, however, increased with an increase in the viscosity of con-tinuous liquid media. The holdups of bubble, wake and continuous liquid media could be correlated in terms of operating variables within this experimental conditions as: ${\varepsilon}_B=0.043D^{-0.18}U_G^{0.56}{\mu}_L^{-0.13}$, ${\varepsilon}_W=0.003D^{-0.85}U_G^{0.46}{\mu}_L^{-0.10}$, ${\varepsilon}_C=1.179D^{0.09}U_G^{-0.13}{\mu}_L^{0.04}$.

Quantitative analysis of lee Amino Acids in Human Blood Seum by Gas-Liquid Chromatography

  • Seo, Bae-Seok;Kim, Ui-Rak;Lee, Kyu-Yong
    • Nuclear Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 1975
  • The quantitative analysis of various kinds of free amino acids contained in blood serum of patients with chronic mandible ostities, epidermic hemorrhagic fever, chronic renal failure and liver cirrhosis were measured with the gas-liquid chromatography (G. L. C.). The results compared with the quantity of free amino acids of healthy persons. It was found that the quantity of free amino acids were differently contained in blood serum in accordance with kinds of patients.

  • PDF

Solid-Liquid Mass Transfer in Gas-Solid-Liquid 3-Phase System Agitated Vessel (기 - 액 - 고 3상계 교반조내의 고-액간 물질이동)

  • Lee, Young Sei;Kato, Yoshihito;Suzuki, Junichiro
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.509-516
    • /
    • 2006
  • The solid-liquid mass transfer coefficients $k_L$ in a gas-liquid-solid three phases agitated vessel were measured with conventional impellers (e.g. Rushton turbine, paddle, and propeller). For the conventional impellers the rotational speed for the complete suspension $N_{js}$ changes with the impeller height and gas flow rate. Mass transfer coefficient of the Rushton turbin impeller, for which the particle suspension was independent of the aeration, is correlated only with Pgv. Mass transfer coefficients $k_L$ for the Rushton turbine, paddle and propeller impellers were affected by the impeller position.

Flow Characteristics of Vertical Upward Gas-Liquid Two-Phase Flow (수직상향 기액이상류의 유동특성)

  • Choi Bu-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2005
  • This paper deals with the flow characteristics of air-water two-phase flow in a vertical tube of 10mm I.D. and 600mm in length at an adiabatic condition. The obtained experimental data were covered with the liquid superficial velocity ranging from 0.095m/s to 2.56m/s. and the gas superficial velocity ranging from 0.032m/s to 21.08m/s. The effects of the gas and liquid superficial velocity on the flow pattern transitions, frictional pressure drop, and film thickness and gas-liquid interface roughness were also examined. It was found that the film thickness increased and the liquid film wave length was more longer with the liquid superficial velocity $j_L$ increasing at $j_G$ constant. It was also showed that the frictional pressure drops were experienced in three regions. namely increasing region(bubbly flow), decreasing region (Taylor bubble and slug flows) and re-increasing region (annular flow).

Molecular Dynamics Simulation of a Small Drop of Liquid Argon

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3805-3809
    • /
    • 2012
  • Results for molecular dynamics simulation method of small liquid drops of argon (N = 1200-14400 molecules) at 94.4 K through a Lennard-Jones intermolecular potential are presented in this paper as a preliminary study of drop systems. We have calculated the density profiles ${\rho}(r)$, and from which the liquid and gas densities ${\rho}_l$ and ${\rho}_g$, the position of the Gibbs' dividing surface $R_o$, the thickness of the interface d, and the radius of equimolar surface $R_e$ can be obtained. Next we have calculated the normal and transverse pressure tensor ${\rho}_N(r)$ and ${\rho}_T(r)$ using Irving-Kirkwood method, and from which the liquid and gas pressures ${\rho}_l$ and ${\rho}_g$, the surface tension ${\gamma}_s$, the surface of tension $R_s$, and Tolman's length ${\delta}$ can be obtained. The variation of these properties with N is applied for the validity of Laplace's equation for the pressure change and Tolman's equation for the effect of curvature on surface tension through two routes, thermodynamic and mechanical.