• Title/Summary/Keyword: L-DOC

Search Result 165, Processing Time 0.087 seconds

Factors Affecting the Formation of Iodo-Trihalomethanes during Chlorination in Drinking Water Treatment (정수처리에서 염소 처리시 요오드계 트리할로메탄류 생성에 영향을 미치는 인자들)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Kyung-A;Song, Mi-Jeong;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.542-548
    • /
    • 2014
  • Effects of bromide ($Br^-$) and iodide ($I^-$) concentrations, chlorine ($Cl_2$) doses, pH, temperature, ammonia nitrogen concentrations, reaction times and water characteristics on formation of iodinated trihalomethanes (I-THMs) during oxidation of iodide containing water with chlorine were investigated in this study. Results showed that the yields of I-THMs increased with the high bromide and iodide level during chlorination. The elevated pH significantly increased the yields of I-THMs during chlorination. The formation of I-THMs was higher at $20^{\circ}C$ than $4^{\circ}C$, $10^{\circ}C$ and $30^{\circ}C$. In chloramination study, addition of ammonium chloride ($NH_4Cl$) markedly increased the formation of I-THMs. Among the water samples collected from seven water sources including wastewater treatment plant (WWTP) effluent water (EfOM water), prepared humic containing water (HA water) and algal organic matter (AOM) containing water (AOM water), EfOM water generated the highest yields of I-THMs ($12.31{\mu}g/mg$ DOC), followed by HA water ($4.96{\mu}g/mg$ DOC), while AOM water produced the lowest yields of I-THMs ($0.99{\mu}g/mg$ DOC). $SUVA_{254}$ values of EfOM water, HA water and AOM water were $1.38L/mg{\cdot}m$, $4.96L/mg{\cdot}m$ and $0.97L/mg{\cdot}m$, respectively. The I-THMs yields had a low correlation with $SUVA_{254}$ values ($r^2$ = 0.002).

Effect of pH Control, Ozonation and Coagulation on THMs Formation in Dringking Water Treatment Process of the Downstream of Nakdong River (낙동강 하류의 정수처리 공정에서 pH, 오존 및 응집이 트리할로메탄 생성에 미치는 영향)

  • Lee, Jeong-Kyu;Son, Hee-Jong;Kim, Sang-Goo;Hwang, Young-Do;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.105-111
    • /
    • 2017
  • This study was conducted to evaluate the effects of pH control and ozonation, coagulation on trihalomethanes (THMs) formation during prechlorination of the Nakdong river water. The results showed that lower pH was reduced THMs formation during prechlorination. THMs formation of water lowered pH 9.5 to 9.0, was reduced 18.3% and lowered pH 9.0 to 8.0 was reduced 14%, lowered pH 8.0 to 7.0 was reduced 7%, lowered pH 9.5 to 8.0 was reduced 29%. A low ozone dose ($0.11{\sim}0.48mg{\cdot}O_3/DOC$) before chlorination reduced the yields of THMs (reduced 6~24% in chlorination) compared with no preozonation. Thus the low ozone dose pretreatment is relatively effective plan to reduce THMs formation during chlorination. When ozone 1.0 mg/L, Alum 40 mg/L and sulfuric acid 6 mg/L dosed, The yields of THMs formation was reduced 42% compared with only chlorination. Input of chlorine after preozonation (followed coagulation, pH control) is more effective than only decline pH at a intake station to control THMs formation in a water treatment process. When chlorine 2.5 mg/L was added before coagulation (alum 40 mg/L), THMs formation was reduced 19% by lower pH and decreased 18% by a natural organic matter (NOM) removal compared with only chlorine 2.5 mg/L addition. Because coagulation could induce simultaneously lower pH and NOM removal, THM formation concentration is more effectively lowed than decreasing pH in the Nakdong river water.

NOM fouling and Removal of Micro-pollutants in RO and NF Membrane processes (RO 및 NF막에서의 부식질에 의한 Fouling 및 미량오염물질의 제거)

  • Wang, Chang-Keun;Cha, Joon-Chul;Lee, Yong-Hyun;Kim, Su-Dong;Liu, Ju-Whan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • This study investigated the phenomena of membrane fouling by NOM and the effect of the fouling on removal of micro-pollutants. NOM has a great effect on decline of permeate flux. Permeate flow rate was reduced by 88% in RO and 34.8% in NF for 323hr operation period. Removal rate of $UV_{254}$, is 87.4% in RO and 78.5% in NF and removal rate of DOC is 42.7% in RO and 32.9% in NF for 2mg/l humic acid. Removal efficiency of the micro-pollutants by the RO and NF membranes fouled by humic acid was mostly lower than that by the new membrane. The concentration polarization which affects the flux and the rejection was thought to occur in the active layer of the membrane, as the membrane was getting fouled.

Efficiency Comparison between Chlorine and Chlorine Dioxide to Control Bacterial Regrowth in Water Distribution System

  • Lee, Yoon-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.282-291
    • /
    • 2006
  • This study investigated the inactivation of the total coliform, an indicator organism in chlorine and chlorine in order to control microbial regrowth for water distribution systems and select an appropriate disinfection strategy for drinking water systems. The disinfection effects of chlorine and chlorine dioxide with regard to the dosage of disinfectant, contact time and DOC was investigated experimentally. In spite of the consistency of chlorine residuals at approximately 0.2 mg/l, bacteria regrowth was detected in the distribution system and it was confirmed by the scanning electron microscope results. The influence of organic carbon change on the killing effect of chlorine dioxide was strong.

Effect of Ozonation and Coagulation on NOM Molecular Distribution and Activated Carbon Adsorption Capacity (응집과 오존처리가 NOM 분자량 분포특성과 활성탄 흡착능에 미치는 영향)

  • Kim, Sung Jin;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.480-486
    • /
    • 2005
  • The main goals of this work are to investigate the effect of molecular weight distribution(MWD) and activated carbon adsorption capacity after conventional coagulation and enhanced coagulation. The ozonation was very effective to decompose the NOM to smaller size and to remove molecular smaller than 1,000. The concentration of DOC was reduced 0.25mg/L and 0.56mg/L by the conventional coagulation and the enhanced coagulation, respectively The conventional coagulation was not effective to remove NOM. However, the enhanced coagulation was effective to remove MW bigger than 10,000. The higher MW was shifted to smaller weight by ozonation in the raw water and the after conventional coagulation. After enhanced coagulation the MW had not changed significantly by ozonation. Also, it was observed that the ozone dosage did not have significant impact on MW shifting to smaller size. The adsorption capacity simulated by IAST comparing K values showed that the adsorption capacity was not impacted by ozone doses. There was very strong correlation between MW smaller than 10,000 and the mid- and strongly adsorbable fractions.

Studies on the surface charge and coagulation characteristics of suspended particles in the aqueous phase (수용액상에서 부유 미립자의 표면전위와 응집특성에 관한 연구)

  • 박상원;김성국;홍대일
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.363-369
    • /
    • 1999
  • This study aimed to elucidate the relationship between theoretical parameters affecting the coagulation process and the real coagulation phenomenon applied to the dye wastewater. Emphasis was placed on the effective removal of the suspend particulates. Parameters studied in this study are pH, coagulant concentration and surface potential. Optimal dosages of coagulants by the measurement of the zeta potential at lower then $25^{\circ}C$ are 5\times$10^P-3}$ M of $FeCl_3 and 1.4\times10^{-6}M of Fe_2(SO_4)_3$. The results were well agreeded with the separate Jar-test results. Emphasis was also placed on the relationship between water quality and the content of SS. It was found that the COD and DOC were reduced to 65% and 85%, respectively. The turbidity at the above condition was reduced from 300 NTU to 0~1 NTU. Efforts were made to clarify the behavior of the suspend solid as affecting the water quality. 12,000~13,000 particles/10mL in $1~50\mu$m size range particulates in the raw wastewater were reduced to 300 particle/10mL in the same range after treatment. This research has proposed the methodology to find out the optimal condition of coagulation for small scale wastewater treatment plant or chemical coagulation process.

  • PDF

Long Term Operation of Microfiltration as a Pretreatment for Seawater Reverse Osmosis Processes (정밀여과를 이용한 역삼투법 해수담수화 전처리 공정의 장기운전 특성)

  • Kim, Su-Han;Kim, Chung-H.;Kang, Suk-H.;Lim, Jae-L.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.735-741
    • /
    • 2010
  • A pilot test was carried out to investigate the long term operation characteristics of Microfiltration (MF) system as a pretreatment for seawater reverse osmosis (SWRO) processes for two years. A commercialized MF module with pressurized operation type was used to filter seawater to remove particles which can foul reverse osmosis (RO) membrane. Silt Density Index (SDI) values of filtered seawater by the MF system were ranged from 0.14 to 1.79, which meet the SDI standard for RO feed water as depicted in previous literatures. Although the tested seawater is quite clean (i.e., dissolved organic cabon (DOC) concentration and turbidity were about 1 mg/l and less than 1 NTU, respectively) enough not to foul the MF membrane, steep increase in trans-membrane pressure (TMP) with a constant flux were observed over a whole operation period. A set of operation and water analysis data implies that the steep increase in TMP was resulted from iron and maganese fouling by the combination of metal corrosion by seawater and oxidation state by aeration and residual chlorine.

Disinfection Effect of Chlorine, Chlorine Dioxide end Ozone on Total Coliform in Water

  • Lee, Yoonjin;Kyoungdoo Oh;Byongho Jun;Sangho Nam
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.140-143
    • /
    • 2003
  • This research was to determine and compare the inactivation of total coliform as the indicator organism with chlorine, chlorine dioxide and ozone for drinking water treatment. The inactivation of total coliform was experimentally analyzed for the dose of disinfectant, contact time, pH, Temperature and DOC. The experiments for the characterization of inactivation were performed in a series of batch processes with the total coliform as a general indicator organism based on chlorine, chlorine dioxide and ozone as disinfectants. The nearly 2.4, 3.0, 3.9 log inactivation of total coliform killed by injecting 1mg/L at 5 minutes for chlorine, chlorine dioxide and ozone. For the inactivation of 99.9%, Disinfectants required were 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. The bactericidal effects of disinfectants were decreased as the pH increased in the range of pH 6-9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The bactericidal effects of the disinfectants were increased as the temperature increase. The activation energies were 36,053, 29,822, 24,906 J/mol of chlorine, chlorine dioxide, ozone for coliforms. The inactivation effects were shown in the lowest order of chlorine, chlorine dioxide and ozone.

  • PDF

Removal of Dissolved Organic Matter by Ozone-biological Activated Carbon process (오존처리와 생물활성탄 공정에 의한 상수원수 중의 용존유기물 제거)

  • 이상훈;문순식;신종철;최광근;심상준;박대원;이진원
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2003
  • The removal yield of dissolved organic matter in drinking water by biological activated carbon (BAC) process was investigated. The tested processes wer raw water-AC process (BAC1), raw water-ozonation-BAC process (BAC2), and raw water-ozonation-coagulation/sedimentation-BAC process (BAC3). The amounts of organic matter was measured as dissolved organic carbon (DOC), ulta-violet radiation at 254 nm wavelength ($UV_{254}$), total nitrogen (T-N), ammonia nitrogen (NH_3$-N), and total phosphate (T-P). As a results, 30.7% DOC was removed by BAC2 process, which showed higher removal efficiency than BAC1 or BAC3 processes. The removal yield of $UV_{254}$ in BAC1, BAC2, and BAC3 processes were observed as 45.3%, 44.6%, 58.4%, respectively. And the removal yield of ammonia nitrogen were 66%, 81%, 29% in each BAC processes. The optimal empty bed contact time (EBCT) of BAC processes was estimated as 10 minute. This study has shown that BAC process combined with ozone treatment was efficient for removing dissolved organic matter in water.

Removal of Phosphorus and NOM in Wastewater Effluent Using Ejector.BAF System (분사배출 고도 응집.생물여과 공정을 이용한 하수처리수 중의 TP 및 NOM 제거)

  • Jang, Young-Ho;Kang, Dong-Han;Kim, Keugtae;Im, Heung-Bin;Hwang, Chan-Won;Kim, Mi-Jung;Shin, Hyung-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.505-511
    • /
    • 2012
  • While the existing sewage treatment facilities are mainly being operated by biological processes, winter-time efficiency improvement and additional phosphorus treatment equipment using chemicals have been required to follow the effluent criteria of TP (0.2, 0.3 and 0.5 mg/L for the zone of I, II and III respectively) and $BOD_5$ (5.0 mg/L) which is intensified from 2012 in Republic of Korea. We made an investigation into actual condition of biological treatment process and calculated the optimal chemical input amount by jar test of supernatant of secondary sedimentation tank to evaluate the process improvement for the intensified criteria. Ejector BAF system for removing TP, $BOD_5$ of sewage effluent was suggested. The concentration of TP from biological process is 0.3-0.8 mg/L, and the input amount of optimal chemical coagulant was above Al/P ratio of 3(1.9 mg/L as Al) to meet the criteria of TP for secondary treatment effluent. From the results of this experiment, the best Al/P ratio for Ejector BAF system was about Al/P ratio of 1, and LV of BAF process for intensified criteria of $BOD_5$ and TP was below 1.97m/hr.