DOI QR코드

DOI QR Code

Effect of pH Control, Ozonation and Coagulation on THMs Formation in Dringking Water Treatment Process of the Downstream of Nakdong River

낙동강 하류의 정수처리 공정에서 pH, 오존 및 응집이 트리할로메탄 생성에 미치는 영향

  • 이정규 (부산시 상수도사업본부 수질연구소) ;
  • 손희종 (부산시 상수도사업본부 수질연구소) ;
  • 김상구 (부산시 상수도사업본부 수질연구소) ;
  • 황영도 (부산시 상수도사업본부 수질연구소) ;
  • 류동춘 (부산시 상수도사업본부 수질연구소)
  • Received : 2017.01.19
  • Accepted : 2017.02.24
  • Published : 2017.03.31

Abstract

This study was conducted to evaluate the effects of pH control and ozonation, coagulation on trihalomethanes (THMs) formation during prechlorination of the Nakdong river water. The results showed that lower pH was reduced THMs formation during prechlorination. THMs formation of water lowered pH 9.5 to 9.0, was reduced 18.3% and lowered pH 9.0 to 8.0 was reduced 14%, lowered pH 8.0 to 7.0 was reduced 7%, lowered pH 9.5 to 8.0 was reduced 29%. A low ozone dose ($0.11{\sim}0.48mg{\cdot}O_3/DOC$) before chlorination reduced the yields of THMs (reduced 6~24% in chlorination) compared with no preozonation. Thus the low ozone dose pretreatment is relatively effective plan to reduce THMs formation during chlorination. When ozone 1.0 mg/L, Alum 40 mg/L and sulfuric acid 6 mg/L dosed, The yields of THMs formation was reduced 42% compared with only chlorination. Input of chlorine after preozonation (followed coagulation, pH control) is more effective than only decline pH at a intake station to control THMs formation in a water treatment process. When chlorine 2.5 mg/L was added before coagulation (alum 40 mg/L), THMs formation was reduced 19% by lower pH and decreased 18% by a natural organic matter (NOM) removal compared with only chlorine 2.5 mg/L addition. Because coagulation could induce simultaneously lower pH and NOM removal, THM formation concentration is more effectively lowed than decreasing pH in the Nakdong river water.

본 연구는 낙동강 하류원수를 정수처리하는 정수장에서 전염소 처리시 pH 조절, 오존처리, 응집이 THMs 생성에 미치는 영향을 평가하기 위해 수행하였다. 원수의 pH를 낮추면 전염소 처리에 의해 THMs 생성이 저감되었다. pH를 9.5에서 9.0로 낮추면 THMs 생성이 18.3%, 9.0에서 8.0으로 낮추면 14%, 8.0에서 7.0으로 낮추면 7%, 9.5에서 8.0으로 낮추면 29% 감소되었다. 염소처리 전에 저농도의 오존($0.11{\sim}0.48mg{\cdot}O_3/DOC$)을 주입하면 오존을 주입하지 않은 경우에 비해 THMs 생성을 6~24% 정도 저감시킬 수 있었다. 전오존 1.0 mg/L을 주입한 원수에 염소 2.5 mg/L를 주입하고 alum 40 mg/L, 황산 6 mg/L를 주입한 경우 THMs 생성농도가 염소만 처리한 경우에 비해 42% 감소하였다. 정수처리공정에서 전오존 처리 후에 염소를 투입하고 응집이나, pH 조절을 하면 취수구에서 pH만 낮추는 경우에 비해 THMs 제어에 더 효과적이다. 염소 2.5 mg/L를 주입한 후 alume 40 mg/L 주입하여 응집실험을 한 결과, THMs 생성농도가 염소만 투입한 경우에 비해 pH 저하로 인해 19%, 천연 유기물질(NOM)의 제거로 18% 정도 저감되었다. 응집은 pH 저하와 유기물 제거를 동시에 유발하기 때문에 pH를 낮추는 경우에 비해 THMs 생성농도 저감에 효과적이었다.

Keywords

References

  1. Liang, L. and Singer, P. C., "Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water," Environ. Sci. Technol., 37(13), 2920-2928(2003). https://doi.org/10.1021/es026230q
  2. Shan, J., Hu, H., Kaplan-Bekaroglu, S. S., Song, H. and Karanfil, T., "The effects of pH, bromide and nitrate on halonitromethan and trihalomethane formation from amino acids and amino sugars," Chemosphere, 86, 323-328(2011).
  3. Bond, T., Huang, J., Graham, N. J. D. and Templeton, M. R., "Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water - a case study," Sci. Total Environ., 470-471, 469-479(2014). https://doi.org/10.1016/j.scitotenv.2013.09.106
  4. Kristiana, I., Charrois, J. W. A. and Hudrey, S. E., "Research overview, regulatory history and current worldwide status of DBP regulations and guidelines," In Disinfection By-Products and Human Health, Hudrey, S. E. and Charrois, J. W. A. (Eds), International Water Association Publishing, London, pp. 11-39(2012).
  5. Son, H. J., Roh, J. S., Kim, S. G., Bae, S. M. and Kang. L. S., "Removal characteristics of chlorination disinfection by-products by activated carbon," J. Korean Soc. Environ. Eng., 27(7), 762-770(2005).
  6. Son, H. J., Yoo, S. J., Yoo, P. J. and Jung, C. W., "Effects of EBCT and water temperature on HAA removal using BAC process," J. Korean Soc. Environ. Eng., 30(12), 1255-1261(2008).
  7. Son, H. J., Roh, J. S., Bae, S. D., Choi, Y. I. and Jung, C. W., "Evaluation of the characteristics of THM formation by chlorination in extracted humic acid from Nakdong river," J. Korean Soc. Environ. Eng., 29(4), 412-418(2007).
  8. Ji, Q., Liu, H., Hu, C., Qu, J., Wang, D. and Li, J., "Removal of disinfection by-products precursors by polyaluminum chloride coagulation coupled with chlorination," Sep. Purif. Technol., 62, 464-469(2008). https://doi.org/10.1016/j.seppur.2008.02.024
  9. Huber, S. A., Balz, A., Abert, M. and Pronk, W., "Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND)," Water Res., 45, 879-885(2011). https://doi.org/10.1016/j.watres.2010.09.023
  10. Kim, J., Chung, Y., Shin, D., Kim, M., Lee, Y., Lim, Y. and Lee, D., "Chlorination by-products in surface water treatment process," Desalination, 151, 1-9(2003). https://doi.org/10.1016/S0011-9164(02)00967-0
  11. Rong, H., Gao, B., Dong, M., Zhao, Y., Sun, S., Q. Wang, Y., Yue, Q. and Li, Q., "Characterization of size strength and structure of aluminum-polymer dual-coagulant flocs under different pH and hydraulic conditions," J. Hazard. Mater., 252-253, 330-337(2013). https://doi.org/10.1016/j.jhazmat.2013.03.011
  12. Lin, C., Liu, S. and Hao, O., "Effect of functional groups of humic substances on UF performance," Water Res., 35, 2395-2402(2001). https://doi.org/10.1016/S0043-1354(00)00525-X
  13. Uyak, V., Ozdemir, K. and Toroz, I., "Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs," Sci. Total Environ., 378, 269-280(2001).
  14. Snoeyink, V. L. and Jenkins, D., "The carbonate system," In Water Chemistry, John Wiley & Sons, USA, pp. 156-192 (1980).
  15. Chang, C. N., Ma, Y. S. and Zing, F. F., "Reducing the formation of disinfection by-products by pre-ozonation," Chemosphere, 46, 21-30(2002). https://doi.org/10.1016/S0045-6535(01)00195-3
  16. Imai, D., Dabwan, A. H. A., Kaneco, S., Katsumata, H., Suzuki, T., Kato, T. and Ohta, K., "Degradation of marine humic acids by ozone-initiated radical reactions," Chem. Eng. J., 148, 336-341(2009). https://doi.org/10.1016/j.cej.2008.09.013
  17. Galapate, R. P., Baes, A. U. and Okada, M., "Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential," Water Res., 35(9), 2201-2206 (2001). https://doi.org/10.1016/S0043-1354(00)00489-9
  18. Son, H. J., Roh, J. S., Kim, S. G., Kang, L. S. and Lee, Y. D., "The removal of natural organic matter and disinfection by-product precursor by ozone," J. Korean Soc. Environ. Eng., 27(10), 1099-1107(2005).
  19. Wang, F., Ruan, M., Lin, H., Zhang, Y., Hong, H. and Zhou, X., "Effects of ozone pretreatment on the formation of disinfection by-products and its associated bromine substitution factors upon chlorination/chloramination of Tai Lake water," Sci. Total Environ., 475, 23-28(2014). https://doi.org/10.1016/j.scitotenv.2013.12.094
  20. Hu, J., Song, H. and Karanfil, T., "Comparative analysis of halonitromethane and trihalomethane formation and speciation in drinking water: the effects of disinfectants, pH, bromide, and nitrite." Environ. Sci. Technol., 44, 794-799(2010). https://doi.org/10.1021/es902630u
  21. Hua, G. and Reckhow, D. A., "Comparison of disinfection byproduct formation from chlorine and alternative disinfectants," Water Res., 41, 1667-1678(2007). https://doi.org/10.1016/j.watres.2007.01.032
  22. Yang, X., Peng, J., Chen, B., Guo, W., Liang, Y. and Liu, W., "Effects of ozone and ozone/peroxide pretreatments on disinfection byproduct formation during subsequent chlorination and chloramination," J. Hazard. Mater., 239-240, 348-354(2012). https://doi.org/10.1016/j.jhazmat.2012.09.006

Cited by

  1. Evaluation of Biodegradation Characteristics and Kinetic of Parabens and Halogenated Parabens in Biological Activated Carbon (BAC) Process vol.40, pp.7, 2018, https://doi.org/10.4491/KSEE.2018.40.7.290
  2. Evaluation of Water Treatment Efficiency according to Number of Regeneration of GACs For Efficient Operation of GAC Process vol.40, pp.4, 2018, https://doi.org/10.4491/KSEE.2018.40.4.179
  3. Evaluation of NOM Characteristics and Disinfection By-Products (DBPs) Formation Potential in Nakdong River Basin vol.40, pp.12, 2018, https://doi.org/10.4491/KSEE.2018.40.12.495