• Title/Summary/Keyword: L-DOC

Search Result 165, Processing Time 0.026 seconds

Characteristics of DOC Release from Sediment in Eutrophic Lake (부영양호 퇴적층으로부터 용존유기물의 용출특성)

  • Park, Je-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.304-310
    • /
    • 2003
  • This study was conducted to estimate the internal dissolved organic carbon (DOC) loading from sediment in eutrophic shallow Lake Kasumigaura. Contents of water and organic carbon were about 80% and 6.3% with depth in the sediment, respectively. The highest DOC concentration in porewater (104 mg C/l) was observed in September suggesting that the porewater could play an important role as an internal loading of DOC. Results of DOC release experiments showed that the labile-DOC (L-DOC) release was not detected in the oxic condition, while refractory-DOC(R-DOC) release was detected. The L-DOC and R-DOC release rates in the anoxic codition ranged from 14.5${\sim}$ 48.6, 14.4 ${\sim}$27.3 mgC $m^{-2}$ $d^{-2}$, respectively. The current study showed that L-DOC released in the oxic condition was rapidly utilized by aerobic bacteria, in contrast, L-DOC and R-DOC released in anoxic codition were slowly utilized by anaerobic bacteria. These results suggested that L-DOC and R-DOC were closely related to sediment release and most of the R-DOC released could be an important source of DOC in eutrophic lakes during summer. Therefore, R-DOC pool should be added as one of the important energy source for microbial-based aquatic food webs in eutrophic lakes.

Dynamics of Dissolved Organic Matter in eutrophic shallow Lake Kasumigaura, Japan. (수심이 얕은 부영양호에서 용존유기물의 거동)

  • 박제철
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.31-39
    • /
    • 1997
  • The seasonal and spatial changes in dissolved organic carbon(DOC) in Lake Kasumigaura, a shallow and eutrophic lake, were analyzed from October 1992 to October 1995. The proportion of T-DOC was classified by labile(L-DOC) and refractory DOC(R-DOC) on the basis of long-term incubation, fractionated the molecular weight of T-DOC by ultrafiltration. The porewater DOC were measured at sedimental surface of the central basin in order to evaluate the DOC released from the sediment. The proportion of L-DOC and R-DOC were accounted for about 15% and 85% of T-DOC in the central basin, respectively. The molecular weight(MW) distribution occupied some 60% of the low and medium MW. The horizontal variation of T-DOC concentrations trended to higher in the central basin than in the inlet of influent rivers, because of contribution by autochthonous organic carbon loading. The seasonal variation of T-DOC showed to higher summer than winter in the inlet of influent, but at the central basin it fluctuated little seasonally. During the high increase of porewater DOC in 1994 evaluated the high release possibility from the sediment surface (10cm). The present study suggests that autochthonous organic carbon loading must be controlled for improving the water quality of the eutrophic lakes.

  • PDF

Dissolved Organic Matters Characteristics in Freshwater

  • Park, Je-Chul;Oh, Young-Taek;Bae, Sang-Deuk;Ryu, Dong-Kyeong
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.26-26
    • /
    • 2004
  • This study was conducted to evaluate the characteristics of dissolved orgamc matters based on their origins. The dissolved organic carbon(DOC) represents an index for dissolved organic matter and basically regarded as a source of organic pollution. The monthly variations and vertical profiles of dissolved organic carbon(DOC) in Kumoh reservoir were surveyed from May 2001 to April 2002. In addition, other areas such as river, reservoir, sewage and industrial wastewater were also surveyed in summer 2001. Kumoh reservoir was divided with depth into three layers .: epilimnion, metalimnion and hypolimnion. The proportion of total DOC(T-DOC) was classified by labile DOC(L-DOC) and refractory DOC(R-DOC) on the basis of long-term incubation. DOC of freshwater and Kumoh reservoir was ranged to be 1.6~4.1 mgC/L and 2.1~4.0 mgC/L, respectively. L-DOC accounted for 3~30% of DOC from watershed. Therefore, refractory dissolved organic carbon(R-DOC) was major component of DOC in the watershed. The decomposition rate(k) ranged from 0.008 $d^{-1}$ to 0.083 $d^{-1}$ in Kumoh reservoir. The highest decomposition rate(k) was observed at River Hoein III freshwater. Therefore, modified total organic carbon analyzer is needed to be applied for effective management of dissolved organic matter.

  • PDF

Evaluation of Eutrophication and Water Quality in Kumoh Reservoir (금오지의 수환경 및 부영양화 평가)

  • Park, Je Cheol;Kim, Dong Seop;Lee, Seung Hwan
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.389-401
    • /
    • 2004
  • Seasonal and vertical distribution of water quality were investigated from May 2001 to June 2002 in Kumoh reservoir located nearby Kumi City, Kyungpook. Kumoh reservoir that lost the role of agricultural irrigation is currently of rapid eutrophication. The vertical distribution of DO was observed clinograde with hypolimnetic anoxic zone. T-P concentrations at the surface ranged from 0.008 to 0.152 mgP/L and T-N concentrations ranged from 1.4 to 3.0 mgN/L. The vertical and seasonal variation of T-N was smaller than T-P. DOC concentrations, indicator of organic matter pollution, ranged from 2.8 to 5.4 mgC/L. Apportionment of Total-DOC (T-DOC) indicated that 14% of T-DOC was attributed to Labile-DOC(L-DOC) and the rest was due to Refractory-DOC(R-DOC). The values of TSI(Trophic State Index) ranged between 44 and 52 indicating that Kumoh reservoir is under mesotrophic condition. The results of this study indicate that Kumoh reservoir is likely to be under influence of eutrophication and thus water quality will be aggravated. Therefore, the Kumoh reservoir requires further treatment to improve water quality and a plan of the reusing water resource should be developed.

Effect of Water Treatment for Nakdong River Raw Water by Continuous Ozone Process (연속식 오존처리공정을 이용한 낙동강 상수원수의 정수처리 효과)

  • Lim, Young-Sung;Kang, Gwan-Ho;Lee, Hong-Jae;Seo, Dong-Cheol;Park, Moon-Su;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.189-196
    • /
    • 2002
  • This study was carried out to evaluate the pollutant removal efficiencies of the advanced drinking water treatment using ozonation process. For raw water, Nakdong River was used. By conducting continuous ozonation experiments, the following results were obtained. Efficiency of water treatment was enhanced with increase in ozone dosage. When ozone dosage of 3 mg/L was used, preozonation ot raw water reduced TDOC, ADOC, A &BDOC and NRDOC as much as 0.6 mg/L, 0.2 mg/L, 0.1 mg/L and 1.0 mg/L, respectively. On the other hand, content of BDOC increased at the level of 0.8 mg/L. Ratio of UV254 absorbance to DOC content by the preozonation with 1, 3 and 5 mg/L dosage were 0.048, 0.044 and 0.037, respectively. In case of postozonation, it were 0.018, 0.015 and 0.012, respectively. When the ratios of consumpted ozone content to 1 mg of initial DOC were 1.5 and 2.3 in preozonation and postozonation treatment, respectively, the highest DOC removal rates of 25% and 32% were obtained by the continuous ozonation.

Fractionation of DOC and its Correlation to AOX(FP) in the Advanced ater Treatment Process (고도정수처리 공정에서 DOC 분획 특성 및 AOX(FP)와의 관계)

  • Lee, Byung-Cheun;Choi, Kyung-Hee;Choi, Ja-Yoon;Lee, Chul-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.909-918
    • /
    • 2009
  • As a part of dissolved organic matter, dissolved organic carbon (DOC) or biodegradable DOC (BDOC) fraction in particular is one of important issues in water treatment. Due to role as a nutrient source for bacteria, BDOC, therefore, may cause regrowth problems in water distribution system. The main objectives of this study were to investigate the possibility to minimize the concentration of BDOC in advance water treatment process. DOC in water is fractionized into four fractions such as AnBDOC (adsorbable and non-biodegradable DOC) which possesses adsorption properties but no biodegradation ability; nABDOC (biodegradable and non-adsorbable DOC) which has biodegradation properties but no adsorption ability; ABDOC (adsorbable and biodegradable DOC) which has adsorption properties and biodegradable characteristic; and non-removal DOC (nAnBDOC) which do not have either adsorbability or biodegradability. BAC process was effective for adsorbable DOC (AnBDOC+ABDOC) removal. However, in some cases, the removal ratio of adsorbable DOC was not sufficient. BDOC removal rate is very low or irremovable. Thus, for the control of residual DOC, it is necessary to change the operation condition by BAC process. From the analysis results of DOC fractions, water treatment processes appeared to be effective because it could grasp a remarkable amount of biodegradable, adsorbable and non-removal DOC. The concentration of AOX in non-prechlorination process was reduced from 7.1 ${\mu}g$/L to 0.51 ${\mu}g$/L in BAC process followed by ozonation.

Characteristics of DOC Removal by Coagulation Process in the Water Treatment of Nakdong River (낙동강 수계에 대한 정수처리공정에서 응집공정의 DOC 제거 특성)

  • Hwang, Deok-Heung;Kim, Dong-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.66-73
    • /
    • 1999
  • This study was carried out to derive the removal characteristics of target materials(DOC and turbidity) during the coagulation process after the injection of coagulants(PACl and FeCl3). Used apparatus were a jar test and a pilot plant. A great portion of DOC among the total removed DOC was achieved at the slow mixing process among the coagulation process. The ranges of removed DOC and optimum pH for each coagulant were 0.45~1.47mg/l and 6.0~6.5 by PACl, and 0.97~2.61mg/l. and 5.0~5.5 by FeCl3, respectively. Both of coagulants showed little increase of DOC removal above coagulant dosage 20mg/l Molecular weight distribution(MWD) of removed DOC was measured by get filtration(GF) technique. The MWD variation by gel filtrationin(GF) for removed DOC in the coagulation process were as follows; for raw water, the percentages of each MWD for total area were < MW 6,500 25.5%, MW 6,500~66,000 67.1%, and > MW 66,000 7.4%. For the same coagulant dosage(12mg/l), the percentages of each MWD for total area by PACl were < MW 6,500 20.5%, MW 6,500~66,000 48.7%, and > MW 66,000 9.1%, and those of FeCl3 were MW 66,000 18.2%. For each coagulant, the removal percentage of MW 6,500~66,000 occurred a little, but at a part of

  • PDF

Characteristics of Transformation Process of Wastewater in Sewer (하수관거내 오염물질 성상변화 특성)

  • Lee, Doo-Jin;Kim, Moon-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.911-916
    • /
    • 2005
  • In this study, variations of water quality, sediment size and contaminant substances are analyzed at upstream and downstream in sewer systems in order to evaluate the characteristics of wastewater transformation by physico-chemical and biological reactions. The differences of DOC concentration between up and down stream showed the range of $-5.8{\sim}18.6$ from the result of continuous measurement at up and down stream. About 8.4% of DOC concentration was reduced and reduction rate was 2.3 mg/L/km. SS reduction rate was measured by 5.5 mg/L/km, 0.22 mg/L/min from upstream to downstream, which was twice than DOC reduction rate. When pollution load reduction was evaluated considering infiltration/inflow effect, DOC load was eliminated from 1,230 ka/d to 1,167 kg/d by physi-chemical and biological reaction in a sewer and 7.8% of the SS in upstream station was reduced under dry weather condition. The results showed that the characteristics of transformation process of wastewater in sewer should be considered for design and operation of wastewater treatment plant.

Patterns in solute chemistry of six inlet streams to Lake Hövsgöl, Mongolia

  • Puntsag, Tamir;Owen, Jeffrey S.;Mitchell, Myron J.;Goulden, Clyde E.;McHale, Patrick J.
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.289-298
    • /
    • 2010
  • A number of characteristics of the Lake H$\ddot{o}$vsg$\ddot{o}$l watershed, such as the lake's location at the edge of the Central Asian continuous permafrost zone, provide a unique opportunity to evaluate possible anthropogenic impacts in this remote area in northern Mongolia. In this study, we compared stream solute concentrations in six sub-watersheds in the Lake H$\ddot{o}$vsg$\ddot{o}$l watershed. Water samples were collected during the summer months between 2003 and 2005. Concentrations of $Cl^-$ ranged from 9.8 to $51.3\;{\mu}mol/L$; average nitrate concentrations were very low and ranged from undetectable to $1.1\;{\mu}mol/L$ and average ${SO_4}^{2-}$ concentration at sampling stations with minimal animal grazing ranged from 66 to $294\;{\mu}mol/L$. Average dissolved organic carbon (DOC) concentrations ranged from 642 to $1,180\;{\mu}mol$ C/L. We did not find statistically significant differences in DOC concentrations among the six streams, although DOC concentrations tended to be higher in the two northernmost streams, possibly related to differences in the active layer above the permafrost. Dissolved organic nitrogen (DON) concentrations were correlated with DOC concentration, and followed the same spatial pattern as those for DOC. In streams in this remote watershed, total dissolved nitrogen was made up of mostly organic N, as has been found for other regions distant from anthropogenic N sources. Overall, these results suggest that future research on the dynamics of DOC and DON in this watershed will be especially insightful in helping to understand how changes in climate and land use patterns will affect transformations, retention, and export of dissolved organic matter within these sub-watersheds in the Lake H$\ddot{o}$vsg$\ddot{o}$l region.

Biodegradation of Dissolved Organic Matter Derived from Animal Carcass Disposal Soils Using Soil Inhabited Bacteria (토양 서식 미생물을 이용한 가축사체 매몰지 토양유래 용존 유기물 분해)

  • Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.861-866
    • /
    • 2013
  • The aim of this study was to investigate the biodegradation of dissolved organic matter derived from animal carcass disposal soil using soil inhabited bacteria and to identify the bacteria involved in the biodegradation. The two soils were obtained from the animal carcass burial sites located in Anseong, Gyeonggi-do, Korea. The results indicated that during the biodegradation experiments (56 days), 48% of dissolved organic carbon (DOC) was mineralized within 13 days in soil-derived solution 1 (initial DOC = 19.88 mgC/L), and the DOC concentration at 56 days was $8.8{\pm}0.4$ mg C/L, indicating 56% mineralization of DOC. In soil-derived solution 2 (initial DOC = 19.80 mgC/L), DOC was mineralized drastically within 13 days, and the DOC concentration was decreased to $6.0{\pm}0.4$ mg C/L at 56 days (76% mineralization of DOC). Unlike DOC value, the specific UV absorbance ($SUVA_{254}$) value, an indicator of proportion of aromatic structures in total organic carbon, tended to increase until 21 days and then decreased thereafter. The $SUVA_{254}$ values in soil-derived solutions 1 and 2 were the highest at 21 days. The microbial analysis demonstrated that Pseudomonas fluorescens, Achromobacter xylosoxidans, Nocardioides simplex, Pseudomonas mandelii, Bosea sp. were detected at 14 days of incubation, whereas Pseudomonas veronii appeared as a dominant species at 56 days.