• Title/Summary/Keyword: L-Ascorbic acid

Search Result 893, Processing Time 0.028 seconds

Validation of HPLC Methods for Ascorbic Acid and Its Derivatives in Foods (식품 중 아스코르빈산 유래 산화방지제의 HPLC 분석법 검증 및 개선)

  • Jeong, Min Kyu;Park, Chan Uk;Park, Min Hee;Yeo, JuDong;Park, SeungKwan;Kim, SoHee;Shin, Tae-Sun;Baek, Hyung Hee;Lee, JaeHwan
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.75-79
    • /
    • 2011
  • Analytical methods for food antioxidants including ascorbic acid, erythorbic acid, ascorbyl palmitate (AP), and ascorbyl stearate (AS), were validated using high performance liquid chromatography. Validation parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), and recovery were tested using lard and cider as food model systems. Linearity of ascorbic acid and erythorbic acid were both higher than ($R^2$> 0.99), LOD of these compounds were 0.46 and 0.48 ${\mu}g/mL$, respectively and LOQ were 1.39 and 1.45 ${\mu}g/mL$, respectively. The recovery rates of these compounds were 86.35-94.78% and 84.76-95.02%, respectively. However, the concentration of AP and AS decreased in methanol stock solution. Four other solvents including ethanol, acetonitrile, mixture of methanol and acetonitrile, and mixture of ethanol and acetonitrile were tested to increase the stability of AP and AS under room temperature and refrigerated temperature. Ethanol provided better stability of AP and AS under both room and refrigerated temperature. This study can help to accurately analyze the content of ascorbic acid and its derivatives in processed foods.

Studies on the Anodic Oxidation Behavior of Methanol and L-Ascorbic Acid by Using Glassy Carbon Electrodes Modified with Inorganic-Metal Polymeric Films (무기 금속 고분자 막을 도포시킨 유리질 탄소전극을 이용한 메탄올과 L-ascorbic acid의 양극 산화 거동에 관한 연구)

  • Yoo, Kwang-Sik;Woo, Sang-Beom
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.347-352
    • /
    • 1998
  • A study was carried out on the elelctrochemical characteristics of chemically modified electrodes (CMEs) by cyclic voltammetry. Fabrication of CMEs was made by coating with mixed valence (mv) inorganic-metal polymeric films on the glassy carbon electrode surface by potential cycling. Anodic oxidation behavior of methanol and L-ascorbic acid was studied by using CMEs working electrode. Deposition of films such as mv ruthenium oxo/ruthenium cyanide film (mv Ru-O/CN-Ru), mv ruthenium oxo/ferrocyanide film (mv Ru-O/$Fe(CN)_6$), and mv ruthenium oxo/ruthenium cyanide/Rhodium film (mv Ru-O/CN-Ru/Rh) was obtained to coat by scan rate of 50 mV/sec within the specified potential range (-0.5V ~ +1.2V). Film thickness was controlled by the repeat of the potential cycling. Anodic oxidation behavior of methanol was as follow. Calibration graph by using mv Ru-O/CN-Ru film showed linearly from 10 mM to 80 mM MeOH with slope factor of $-7.552{\mu}A/cm^2$. Although slope factor by using mv Ru-O/$Fe(CN)_6$ film was $-5.13{\mu}A/cm^2$, yet linear range of calibration graph could be extended from 10 mM to 100 mM MeOH. Anodic oxidation behavior of L-ascorbic acid was studied by mv Ru-O/CN-Ru film on the glassy carbon electrode and the glassy carbon electrode with Rh film, Glassy carbon electrode modified with Ru polymeric film was showed better sensitivity than the Rh-glassy carbon modified electrode (mv Ru-O/CN-Ru/Rh). Calibration graph was linear from 0.1 mM to 5 mM L-ascorbic acid by using glassy carbon electrode modified with Ru polymeric film. Solpe factor and relative coefficient are $-84.78{\mu}A/mM$ and 0.998, respectively.

  • PDF

Effect of inhibition on Browning and Microbial Growth of Minimally Processed Lettuce (최소가공 처리에 의한 양상추의 갈변 및 미생물 증식억제 효과)

  • Cha Hwan-Soo;Kim Soon-1m;Kim Byeong-Sam;Kim Sang-Hee;Park Seon-Ju;Cho Han-Sun;chd Hye-Yeon
    • Food Science and Preservation
    • /
    • v.11 no.3
    • /
    • pp.331-335
    • /
    • 2004
  • This study was carried out to improve quality of minimally processed lettuce with various treatments. The treatments for preventing enzymatic browning were using different chemical immersion solutions and controlling microbial growth were using chlorine, electrolyzed water, and organic acid. The solution with ascorbic acid 1$\%$ and citric acid 1 $\%$ showed a positive effect on antibrowning of minimally processed lettuce. In the inhibition of microorganisms growth, 200 ppm NaCIO solution was more effective than fermented pollen solution and Na-dichloroisocyanurate solution. In electrolyzed water system, no-diaphragm system showed inhibitory effect of microorganisms growth. Also, total microorganisms count of minimally processed lettuce with ascorbic acid and citric acid solution was lower by about 4 log cycle after 4 days storage at l0$^{\circ}C$.

Antioxidant Activities of Solvent Extracts from Pomegranate Endocarp (석류 내피 용매별 추출물의 항산화 활성)

  • Jin, So-Yeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1635-1641
    • /
    • 2011
  • This study was designed to investigate antioxidant activities of pomegranate endocarp extracts. Pomegranate endocarp extract contains the highest antioxidant function compared to pomegranate extracts from other parts. Pomegranate endocarp extract was fractionated with hexane, dichloromethane, ethyl acetate, butanol extract, and water, followed by evaluation for antioxidant activity. During this experiment, various antioxidant tests such as nitrite scavenging activity, reducing power, superoxide anion scavenging activity, $ABTS^+$ scavenging activity, SOD like-activity, and DPPH radical scavenging activity were conducted on the $CH_2Cl_2$, EtOAc, BuOH, $H_2O$ fractions of pomegranate endocarp extract. Results showed that the ethyl acetate fraction contained the highest DPPH radical scavenging activity among the samples. For SOD like-activity, the dichloromethane fraction had the highest antioxidant activity. For superoxide anion scavenging activity, the ethyl acetate fraction had the highest antioxidant activity. In the $ABTS^+$ scavenging activity test, the ethyl acetate fraction $IC_{50}$ was 39.26 ${\mu}g$/mL, whereas that of the butanol fraction was 40.95 ${\mu}g$/mL. In testing reduction power at 0.1 mg/mL, the O.D. of the ethyl acetate fraction was highest at 1.404 and showed higher activity than ascorbic acid at 1.332. The results of the nitrite scavenging activity test were very similar to those of the SOD like-activity test. These results suggest that pomegranate endocarp extract may have value as a natural antioxidant.

Antioxidant Properties and Total Phenolic Contents of Cherry Elaeagnus (Elaeagnus multiflora Thunb.) Leaf Extracts

  • Shin, Seung-Ryeul;Hong, Ju-Yeon;Yoon, Kyung-Young
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.608-612
    • /
    • 2008
  • In Korea and China, cherry elaeagnus (Elaeagnus multiflora Thunb.) has been used traditionally to treat cough, diarrhea, itching, and foul sores. Therefore, in this study, the ethanol and water extracts of cherry elaeagnus leaves were examined for their antioxidant activities. The ethanol extract of the cherry elaeagnus leaves contained more phenolics than the water extract. All the cherry elaeagnus leaf extracts had higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability than ascorbic acid at concentrations of $250-1,000\;{\mu}g/mL$. The ethanol extract also showed higher superoxide dismutase (SOD)-like activity compared to the water extract. Furthermore, the SOD-like activity of the ethanol extract amounted to 89% of that of ascorbic acid at a concentration of $500\;{\mu}g/mL$. The nitrite scavenging ability and xanthine oxidase inhibitory (XOI) activity of the ethanol extract were higher than those of the water extract. In particular, the ethanol extract had higher XOI activity than ascorbic acid at a concentration of $1,000\;{\mu}g/mL$.

Effect of Soybean Saponins on Aflatoxin B1-induced Mutagenicity (대두 사포닌이 Aflatoxin B1으로 유도된 세포돌연변이에 미치는 영향에 관한 연구)

  • 전혜승
    • Journal of Nutrition and Health
    • /
    • v.32 no.1
    • /
    • pp.110-117
    • /
    • 1999
  • Free radicals formed during the metabolism of environmental chemicals are known to induce mutagenicity, while different types of antioxidants suppress this event. The purpose of this study was to determine the antioxidative and antimutagenic effects of soybean saponins, and to examine the relationship between these two effects for the elucidation of mechanisms involved in the anticarcinogenicity of soybean saponins. Also, antioxidative and antimutagenic effects of soybean saponins were compared with those of kinown antioxidants. For the measurement of antioxidative capacity, soybean saponins, L-ascorbic acid, $\alpha$-tocophoerol, and BHT at concentrations between 005 and 1.0mg/ml were tested for their ability to donate hydrogens and to reduce the formation of thiobarbituric substances(TBARS). Antimutagenic activity was examined using the Ames salmonella test system at concentrations of 600, 900 or 1200ug/ml. Study results showed soybean saponins and all of the other antioxidants tested possessed dose-dependent antioxidative activities. The ability of hydrogen-donation to DPPH was in the order of L-ascorbic acid>$\alpha$-tocopherol=>BHT>soybean saponins. TBARS formation was also inhibited by these compounds, in the order of BHT>$\alpha$-tocopherol=L-ascorbic acid>soybean saponins. Soybean saponins and other antioxidants also showed antimutagenicity in a dose-dependent manner. Especially, soybean saponins and BHT were excellent antioxidants compounds, inhibiting near 80% of the mutagenic effects at a concentration of 1200ug/ml. The correlation coefficients between antioxidative capacity and antimutagenicity for each compund was statistically significant at p<0.05. These results indicate that soybean saponins possess antioxidative and antimutagenic capacities. Also, antimutagenicity of saponins and other antioxidats is partly due to their antioxidative activities.

  • PDF

Effects of Fe(III) and Cu(II) Ions on the Autoxidation of L-Ascorbic Acid

  • Kim, Mi-Ok
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.83-86
    • /
    • 2001
  • The autoxidation reaction of L-ascorbic acid(AsA), and, particularly, the oxidation rates of AsA in the presence of Fe(III) or Cu(II) ions were determined in water and methanol. UV spectral measurement (at 265 nm) and HPLC were used to determine the remaining amounts of AsA in water and methanol, respectively. It was found that, in the presence of metal ions, the autoxidation rate of AsA was significantly affected by the kinds of solvents used, and also by the kinds of metal ions present. Moreover, the first-order rate constants for the oxidation of non-dissociated AsA compared with dissociated-AsA were investigated. It was confirmed that the oxidation of AsA was more accelerated in the dissociated form of AsA than in the non-dissociated form of AsA in either with Fe(III) or Cu(II). It was also found that the Cu(II) at a concentration of 0.1 $\mu$M had a more significant effect on the first-order rate constants for the autoxidation of AsA than Fe(III) at 5 $\mu$M.

  • PDF

Some Properties and Optimal Culture Conditions of Cyclodextrin Glucanotransferase of Bacillus sp. S-6 Isolated from Kimchi (김치에서 분리한 Bacillus sp. S-6의 Cyclodextrin Glucanotransferase의 특성과 최적생산조건)

  • 전홍기;조영배;김수진;배경미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.609-617
    • /
    • 1998
  • A microorganism capable of producing high level of extracellular cyclodextrin glucanotransferase(EC 2.4.1.19 ; CGTase) was isolated from Kimchi. 2-O-$\alpha$-D-glucopyranosyl L-ascorbic acid(AA-2G) was synthesized by transglycosylation reaction of CGTase using starch as a donor and L-ascorbic acid as an acceptor. The isolated strain S-6 was identified as Bacillus sp. S-6. The maximal CGTase production was observed in a medium containing 0.5% soluble starch, 1% yeast extract, 1% NaCO3, 0.1% K2HPO4, and 0.02% MgSO4 with initial pH 8.0. The strain was cultured at 37$^{\circ}C$ for 40 hr with reciprocal shaking. Using the culture supernatant as crude enzyme, the optimal pH and temperature of the CGTase activity of this strain were 7.0 and 4$0^{\circ}C$. In the effects of pH and temperature on the stability of the enzyme, the enzyme was stable in the range of pH 6.0~10.0 and up to 45$^{\circ}C$, respectively.

  • PDF

Conformation of L-Ascorbic Acid in solution. 1. Neutral L-Ascorbic Acid

  • Shin, Young A.;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 1991
  • Conformational free energy calculations using an empirical potential function and the hydration shell model (a program CONBIO) were carried out on the neutral L-ascorbic acid (AA) in the unhydrated and hydrated states. The conformational energy was minimized from starting conformations which included possible conformations of six torsion angles in the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. From the analysis of conformational free energies for AA in both states, intramolecular hydrogen bonds (HBs) are proved to be an essential factor in stabilizing the overall conformations, and cause the conformations in both states to be quite different from those in crystal. In the case of hydrated AA, there is a competition between HBs and hydration, and the hydration around the two hydroxyl groups attached to the acyclic side chain forces the molecule to form less stable HBs. The hydration affects strongly the conformational energy surfaces of AA. Several feasible conformations obtained in this work indicate that there exists an ensemble of several conformations in aqueous solution. The calculated probable conformations for the rotation about the C5-C6 bond of the acyclic side chain are trans and gauche +, which are in good agreement with results of NMR experiment.

Effect of Sodium Selenate Supplied Condition by Fertigation on the Growth and Content of Minerals, Ascorbic acid, Nitrate, and Selenium of Some Western Vegetables (Sodium selenate의 토양관주 처리방법에 따른 서양채소의 생육과 무기성분, ascorbic acid, nitrate 및 셀레늄 함량에 미치는 영향)

  • Lee, Sung-Jin;Kang, Ho-Min;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • This study was conducted to investigate the proper supplied conditions of sodium selenate supplied by fertigation to improve functionality of major western vegetables; beet, broccoli, cabbage lettuce, celery, and parsley in highland. In this work, the growth and content of minerals, ascorbic acid, nitrate, and selenium were measured in western vegetables that treated sodium selenate by different concentration, treatment time and treatment frequency. While there was not different in early growth of some western vegetables among different concentration of sodium selenate; 1,2, 5 and $20\;mg{\cdot}L^{-1}$, at 20 days after treatment, the fresh weight was reduced 33% at cabbage lettuce,47% at broccoli, and 74% at parsley compared control in $5\;mg{\cdot}L^{-1}$ treatment. But the fresh weight of beet and celery reduced just 20% and 15% compared control in even $20\;mg{\cdot}L^{-1}$. The ascorbic acid of cabbage lettuce, celery, and beet increased as sodium selenate concentration increased, so that of cabbage lettuce showed 1.2 times compared control in $20\;mg{\cdot}L^{-1}$ treatment and also that of beet and celery increased 10%. But the ascorbic acid of broccoli and parsley was not influenced by treated sodium selenate. As the concentration of sodium selenate increased, the nitrate contents decreased regardless of crops compared control. This reduced effect of nitrate was highest in cabbage lettuce, followed by beet and celery. The mineral contents, such as K, Ca, and Mg, decreased in all crops, as the concentration of sodium selenate increased. The potassium content showed an obvious negative correlationship with the concentrations of sodium selenate regardless of crops, but the magnesium and calcium content did not show significant difference between treatments. The selenium content increased in proportion as increasing sodium selenate concentrations. The broccoli, celery and parsley treated $20\;mg{\cdot}L^{-1}$ sodium selenate showed 24.4 times, 76.4 times, and 560 times higher than control, respectively. When the sodium selenate supplied to some western vegetables in different growth stage, the selenium content increased 1.3 times and 1.4 times higher in early stage than in late stage in cabbage lettuce and broccoli, respectively. However in parsley and celery, the selenium content showed the highest in middle stage. The selenium content increased in proportion as increasing the sodium selenate treatment frequency, but in above 10 times treatment, the increased effect alleviated in parsley, celery, and cabbage lettuce. On the contrary, the selenium content of broccoli increased constantly as treatment frequency increased.