• Title/Summary/Keyword: L-Ascorbic Acid(AA)

Search Result 82, Processing Time 0.036 seconds

Vitamin C Quantification of Korean Sweet Potatoes by Cultivar and Cooking Method (국내산 고구마의 품종 및 조리방법별 비타민 C 함량)

  • Hwang, In Guk;Byun, Jae Yoon;Kim, Kyung Mi;Chung, Mi Nam;Yoo, Seon Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.955-961
    • /
    • 2014
  • This study was carried out to investigate the amounts of vitamin C in 22 sweet potato cultivars cultivated in Korea as well as evaluate the effects of cooking methods on vitamin C contents. Methods for determining vitamin C was validated by determining linearity, specificity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy using HPLC. Results showed high linearity in the calibration curve with a coefficient of correlation ($R^2$) of 0.9999. The LOD and LOQ values for ascorbic acid (AA) were 0.03 and $0.10{\mu}g/mL$, respectively. The relative standard deviations (RSDs) for intra- and inter-day precision of AA were less than 5%. The recovery rates of AA and dehydroascorbic acid (DHA) were in the range from 98.21~98.64 and 98.28~100.68%, respectively. Depending on cultivar, contents of AA, DHA, and total ascorbic acid (TA) in sweet potatoes varied in the range from 37.76 (Sinyulmi)~89.25 (Juhwangmin), 23.37 (Sinjami)~63.94 (Sinyulmi), and 68.52 (Sinjami)~115.95 (Juhwangmin) mg/100 g, respectively, and their average levels were $56.98{\pm}12.53$, $36.46{\pm}9.03$, and $93.44{\pm}12.00mg/100g$, respectively. The average TA levels were also dependent on flesh color, whish was significantly higher in general sweet potato and orange sweet potato than in purple sweet potato. Steaming, baking, and frying processes significantly reduced AA (10.61~58.41%), DHA (2.57~52.81%), and TA (14.54~49.92%) contents in sweet potatoes. The highest reduction of AA, DHA, and TA contents was observed after baking, followed by steaming and frying. We expect that the basic information provided by this study will be useful to plant breeders and food scientists.

Enhanced Aqueous Stability of Hirsutenone with Antioxidant

  • Moon, Ki-Young;Ahn, Byeong-Kil;Lee, Sang-Gon;Lee, Seo-Hyun;Yeom, Dong-Woo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.331-336
    • /
    • 2011
  • The instability of hirsutenone (HST), a potential therapeutic candidate for the treatment of atopic dermatitis (AD) and ovarian carcinoma, is one of the main concerns for the development of drug product. In the present study, aqueous stability of HST was investigated by kinetic analysis, and the effect of several factors covering temperature, nitrogen gas ($N_2$) flushing, and selection of proper antioxidant was compared. Cosolvent system composed of distilled water and methanol (9:1 v/v) was used as a vehicle to dissolve HST at the concentration of $200{\mu}g/mL$. Samples of aqueous solution were prepared under the absence or presence of antioxidants, such as ascorbic acid (AA), sodium edetate (EDTA), and ascorbyl palmitate (AP), and subjected for stability test. The degradation of HST in aqueous solution was followed by the first order kinetics with an extremely short half life of less than a week at room temperature, and was accelerated as the temperature increased. $N_2$ flushing brought a little enhancement in stability compared to control solution, but the effect was insufficient. The addition of AA and EDTA (0.1%) significantly enhanced the stability of HST at $40^{\circ}C$, but the addition of AP (0.01%) was limited due to its water insolubility and revealed no promising result. The stability of HST was increased proportionally by the amount of AA added, showing the difference in degree of stabilization as an order of magnitude. Finally, we conclude that HST was stabilized by the addition of a suitable antioxidant, suggesting AA as the most effective stabilizer.

Expression and Optimum Production of Cyclodextrin Glucanotransferase Gene of Paenibacillus sp. JB-13 in E. coli (Paenibacillus sp. JB-13 Cyclodextrin Glucanotransferase 유전자의 E. coli 에서의 발현 및 최적 생산)

  • Kim, Hae-Yun;Lee, Sang-Hyeon;Kim, Hae-Nam;Min, Bok-Kee;Baik, Hyung-Suk;Jun, Hong-Ki
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.74-79
    • /
    • 2008
  • The purpose of this study is to clone cgt gene from Paenibacillus sp. JB-13 and to overexpress the protein in E. coli. For this purpose, the cgt gene was amplified from Paenibacillus sp. JB-13 genomic DNA by PCR using degenerate oligonucleotide primers. The sequence analysis results showed that the cgt gene from Paenibacillus sp. JB-13 has 98% homology with the cgt gene of Bacillus sp. To overexpress the protein, the cgt gene was cloned into pEXP7 expression vector and transformed into E. coli. The production of CGTase by recombinant E. coli was optimized under following conditions: 0.5% glucose, 3.0% polypeptone, 0.3% $K_2HPO_4$, 0.5% NaCl, and 7.0 of initial pH, 2.0% of inoculum, $37^{\circ}C$ of culture temperature for 14 hr. And the optimal agitation was found at 0.1 vvm. The synthesis of 2-O-${\alpha}$-D-Glucopyranosyl L-Ascorbic acid (AA-2G) using the CGTase expressed in E. coli was identified as AA-2G by HPLC and HPLC confirmed that treating AA-2G made by cloned CGTase with ${\alpha}$-glucosidase substantially produced AA and glucose.

Effect of L-ascorbic acid on the degradation of aflatoxin $B_1$ (아스콜빈산에 의한 Aflatoxin $B_1$의 파괴에 관한 연구)

  • Park, Kun-Young;Kweon, Mee-Hyang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 1987
  • Large amount of aflatoxin $B_1(AFB_1)$ is disappeared in the presence of L-ascorbic acid(AA) in buffer solution at pH values from 1 to 7 during 5 days of Incubation at $37^{\circ}C$. $AFB_1$ was quite stable at pH's between 5 and 7 when AA was absent(control), however, $50{\sim}60%$ of APB, was degraded in its presence after 5 days. The rate of disappearance of $AFB_1$ increased with a decreasing of pH in the presence of AA, even though $AFB_1$ in the control degraded increasingly with the decrease in $pH(pH{\leq}4)$. The level of $AFB_1$, decreased as the reaction temperature increased when $AFB_1$ reacted with AA. The aflatoxin could not be detected at all after 3 days when the reaction occurred at $60^{\circ}C$, while the aflatoxin was stable at $5^{\circ}C$ thoughout the reaction period. $90{\sim}96%$ of $AFB_1$ was found to be degraded in a far when $AFB_1$ reacted with AA plus different concentrations of $CuSO_4{\cdot}5H_{2}O$, showing remarkably faster rate than the control; however, different concentrations of L-cysteine instead of $CuSO_4\;5H_{2}O$ protected the degradation of aflatoxin and no $AFB_1$ was degraded for a day and resulted in less $AFB_1$ disappeared than the control. The degradation of $AFB_1$ was dependent on AA concentration and the rate of disappearance as the concentration of AA decrease, but $AFB_1$ concentration did not influence the rate. The product formed when $AFB_1$ reacted with AA was identified to $AFB_{2a}$ by using HPLC chromatographic examinations, and by UV spectrum of $AFB_1$ reacted with AA. The disappearance of $AFB_1$ was correlated well in the appearance of $AFB_2a$. From the results, the degradation of $AFB_1$ in the presence of AA is probably due to one or more of the oxidative products of AA which was produced during the AA oxidation.

  • PDF

Antioxidative Activity of Heat Treated Licorice (Glycyrrhiza uralensis Fisch) Extracts (열처리한 감초추출물의 항산화활성)

  • Woo, Koan-Sik;Jang, Keum-Il;Kim, Kwang-Yup;Lee, Hee-Bong;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.355-360
    • /
    • 2006
  • Antioxidative activity and physicochemical characteristics of heat-treated licorice extracted by ethyl-acetate (EtOAc) and ethyl-alcohol (EtOH) were evaluated at various treatment temperatures (110, 120, 130, 140, and $150^{\circ}C$), times (1, 2, 3, 4, and 5 hr), and moisture contents (10, 20, 30, 40, and 50%). Maximum extraction yields of EtOAc treated at $140^{\circ}C$, 2 hr, and 20% moisture content and EtOH extracts treated at $120^{\circ}C$, 2 hr, and 40% moisture content were 9.48 and 32.90%, whereas those of control were 3.74 and 14.60%, respectively. Highest total polyphenol content was obtained from 13.95 mg/g EtOH extract treated at $150^{\circ}C$, 3 hr, and 30% moisture content (control: 6.92 mg/g). Highest antioxidative activity $(IC_{50})$ was obtained from 0.32 g/L EtOAc treated at $140^{\circ}C$, 2 hr, and 20% moisture content (control: 0.57 g/L). Highest ascorbic acid equivalent antioxidant activity value of 2,112.61 mg ascorbic acid (AA) eq was obtained from EtOAc extract treated at $120^{\circ}C$, 2 hr, and 40% moisture content (control: 1,920.27 mg AA eq). Optimum heat treatment conditions were $130-140^{\circ}C$, 3 hr, and 30% moisture content.

Antioxidant Activity of Heated Licorice (Glycyrrhiza uralensis Fisch) Extracts in Korea (열처리한 국산 감초추출물의 항산화활성)

  • Woo, Koan-Sik;Hwang, In-Guk;Noh, Young-Hee;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.6
    • /
    • pp.689-695
    • /
    • 2007
  • Antioxidative activity and polyphenol contents of heated licorice in Korea extracted by ethyl.acetate (EtOAc) and ethyl.alcohol (EtOH) were evaluated at various heating temperatures (110, 120, 130, 140, and $150^{\circ}C$), times (1, 2, 3, 4, and 5 hr), and moisture contents (10, 20, 30, 40, and 50%). Maximum extraction yields of EtOAc extract was 10.9% at $130^{\circ}C$, 3 hr, and 50% moisture content and that of EtOH extract was 25.0% at $120^{\circ}C$, 2 hr, and 20% moisture content, whereas those of control were 0.8 and 15.8%, respectively. The highest total polyphenol content was 845.67 mg/100 g in EtOH extract at $120^{\circ}C$, 2 hr, and 20% moisture content (control: 277.00 mg/100 g). The antioxidative activity ($IC_{50}$) was the highest value of 0.53 mg/mL in EtOAc extract at $120^{\circ}C$, 2 hr, and 20% moisture content (control: 12.34 mg/mL). The highest ascorbic acid equivalent antioxidant activity value of 1,584 mg ascorbic acid (AA) eq was obtained from EtOAc extract at $120^{\circ}C$, 2hr, and 40% moisture content (control: 1,263 mg AA eq). Optimum heating conditions for the improvement of antioxidative activity of licorice in Korea was $120^{\circ}C$, 2 hr, and $20{\sim}40%$ moisture content.

Effect of Antioxidants on In Vitro Development of Korean Native Cattle Embryos Derived from In Vitro Fertilization (항산화제 첨가가 한우 체외 수정란의 체외 배발달에 미치는 영향)

  • 문승주;김은국;김재홍;명규호;선상수
    • Journal of Embryo Transfer
    • /
    • v.14 no.3
    • /
    • pp.219-224
    • /
    • 1999
  • The effect of several potential antioxidants were examined as a means of increasing the in vitro development of in vitro matured and in vitro fertilized oocytes into morulae and blastocysts. Korean native cattle embryos after in vitro fertilization were cultrued for 7 days at 38.5$^{\circ}C$ in CR1aa containing varing concentration of the antioxidants in a gas phases consisting of 5% CO2, 95% humidified air. The results obtained were summarized as follows; The proportion of embryos developed to morulae and blastocysts in CR1aa containing 2.5uM $\alpha$-tocopherol(11.0% and 6.0%) was significantly higher than those of 0, 5.0, and 7.5uM $\alpha$-tocopherol (P<0.05). concentration of 50uM L-ascorbic acid (7.5% blastocysts) did affect the proportion of embryos developing into blastocystes(P>0.05). Addition of 200uM cysteamine was significantly higher than those of 0, 100 and 300uM (P<0.05). When the fertilized oocytes were cultured at 0. 200, 400 and 600uM of selenium for 168 hrs, the morulae rates were 12.2, 5.2, 16.0 and 16.1% respectively, and addition of 200uM selenium was significantly higher than those of 0, 400, 600uM (P<0.05). These results suggested that the addition of $\alpha$-tocopherol, L-ascorbic acid, cysteamine and selenicum can enhanced development to the morulae and blastocysts of in vitro derived fertilized oocytes.

  • PDF

Comparisons of Urinary Arsenic Analysis by Pre-reductant for Preconditioning via the FI-HG-AAS Method (FI-HG-AAS를 이용한 전처리 과정에서 사용되는 예비환원제의 종류에 따른 요중 비소 분석결과 비교)

  • Choi, Seung-Hyun;Choi, Jae Wook;Cho, YongMin;Bae, Munjoo
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.289-298
    • /
    • 2015
  • Objectives: The method of analyzing urinary arsenic by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) is generally used because it shows relatively greater sensitivity, low detection limits, low blocking action, and is simple to operate. In this study, the results of analysis according to three pre-reductants commonly used in the FI-HG-AAS method were compared with each other. Methods: To analyze urinary arsenic, nineteen urine samples were collected from adults aged 43-79 years old without occupational arsenic exposure. Analysis equipment was FI-HG-AAS (AAnalyst 800/FIAS 400, Perkin- Elmer Inc., USA). The three pre-reductants were potassium iodide (KI/AA), C3H7NO2S (L-cysteine), and a mixture of KI/AA and L-cysteine (KI/AA&L-cysteine). Results: In the results of the analysis, the recovery rate of the method using KI/AA was 82.3%, 95.7% for Lcysteine, and 123.5% for KI/AA and L-cysteine combined. When compared with the results by use of high performance liquid chromatography inductively-coupled plasma mass spectrometry (HPLC-ICP-MS), the method using L-cysteine was the closest to those using HPLC-ICP-MS ($98.57{\mu}g/L$ for HPLC-ICP-MS; $74.96{\mu}g/L$ for L-cysteine; $69.23{\mu}g/L$ for KI/AA and L-cysteine; $13.06{\mu}g/L$ for KI/AA) and were significantly correlated (R2=0.882). In addition, they showed the lowest coefficient of variation in the results between two laboratories that applied the same method. Conclusion: The efficiency of hydride generation is considered highly important to the analysis of urinary arsenic via FI-HG-AAS. This study suggests that using L-cysteine as a pre-reductant may be suitable and the most rational among the FI-Hg-AAS methods using pre-reductants.

Suppressive effects of ethanol extract of Aralia elata on UVB-induced oxidative stress in human keratinocytes (자외선 B를 조사한 인간유래각질세포에서 두릅순 에탄올추출물의 산화적 스트레스 억제효과)

  • Kwak, Chung Shil;Yang, Jiwon
    • Journal of Nutrition and Health
    • /
    • v.49 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • Purpose: Ultraviolet (UV)-induced oxidative stress contributes to several adverse biological effects on skin. Many phenolic phytochemicals have been shown to have antioxidant properties and protect skin cells from UV-induced oxidative damage. In this study, we investigated whether or not Aralia elata (AE) has a protective effect against UVB-induced reactive oxygen species (ROS), ultimately leading to photoaging. Methods: Phenolic content of dried AE and antioxidant properties of AE extract in 70% ethanol weredetermined by measuring DPPH and ABTS radical scavenging activities and ferric reducing antioxidant power (FRAP). The effect of AE extract on cellular ROS generation and expression levels of oxidative stress-response proteins such as superoxide dismutase (SOD)-1, catalase, nuclear factor-erythroid 2-related factor (Nrf)-2, and heme oxygenase (HO)-1 in UVB-irradiated ($75mJ/cm^2$) human keratinocytes (HaCaT) were further determined by 2'-7'-dichlorofluoresceine diacetate assay and Western blotting, respectively. Results: The total phenolic and flavonoid contents of dried AE were 20.15 mg tannic acid/g and 18.75 mg rutin/g, respectively. The $IC_{50}$ of AE extract against DPPH radical was $98.5{\mu}g/mL$, and ABTS radical scavenging activity and FRAP upon treatment with $1,000{\mu}g/mL$ of AE extract were $41.8{\mu}g\;ascorbic\;acid\;(AA)\;eq./mL$ and $29.7{\mu}g\;AA\;eq./mL$,m respectively. Pretreatment with AE extract significantly reduced (p < 0.05) ROS generation compared to that in UVB-irradiated control HaCaT cells. Pretreatment with AE extract reversed reduction of Nrf-2 and SOD-1 protein expression and induction of HO-1 protein expression caused by UVB exposure in HaCaT cells, whereas it did not affect catalase expression. Conclusion: AE extract in 70% ethanol demonstrated a protective effect against UVB-induced oxidative stress and decreased expression of Nrf-2 and SOD-1 in human keratinocytes. These findings suggest that AE ethanol extract might have potential as a natural resource for a skin anti-photoaging product in the food and cosmetic industry.

Isolation and Identification of the Antioxidant DDMP from Heated Pear (Pyrus pyrifolia Nakai)

  • Hwang, In Guk;Kim, Hyun Young;Woo, Koan Sik;Lee, Sang Hoon;Lee, Junsoo;Jeong, Heon Sang
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.76-79
    • /
    • 2013
  • We evaluated antioxidant activities of heated pear juice (HPJ) exposed to 120, 130, and $140^{\circ}C$ for 2 hr. HPJ was partitioned using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The ethyl acetate fraction treated at $130^{\circ}C$ for 2 hr showed strong antioxidant activity; thus, this extract was isolated and purified using silica gel column chromatography and preparative high performance liquid chromatography. The structure of the purified compound was determined using ultraviolet and mass spectrometry, $^1H$-nucelar magnetic resonance (NMR), and $^{13}C$-NMR. Antioxidant activities of the isolated compound were evaluated and compared with ${\alpha}$-tocopherol, ascorbic acid, and butylated hydroxytoluene (BHT) using DPPH and ABTS assays. The isolated compound was identified as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). The DPPH radical-scavenging activity ($IC_{50}$) of DDMP occurred in the following order: ascorbic acid ($45.3{\mu}g/mL$) > ${\alpha}$-tocopherol ($69.2{\mu}g/mL$) > DDMP ($241.6{\mu}g/mL$) > BHT ($268.0{\mu}g/mL$). Furthermore, DDMP showed strong ABTS radical-scavenging activity (569.0 mg AA eq/g).