• 제목/요약/키워드: L-Arginine-nitric oxide pathway

검색결과 43건 처리시간 0.021초

Nitric Oxide-mediated Relaxation by High $K^+$ in Human Gastric Longitudinal Smooth Muscle

  • Kim, Young-Chul;Choi, Woong;Yun, Hyo-Young;Sung, Ro-Hyun;Yoo, Ra-Young;Park, Seon-Mee;Yun, Sei-Jin;Kim, Mi-Jung;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.405-413
    • /
    • 2011
  • This study was designed to elucidate high-$K^+$ induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high $K^+$ (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high $K^+$ (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high $K^+$-induced relaxation. $K^+$ channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium ($Ba^{2+}$) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent $K^+$ channel (KV) blocker, inhibited high $K^+$ -induced relaxation, hence reversing to tonic contraction. High $K^+$-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and KV channel blocker sensitive high $K^+$-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high $K^+$-induced relaxation which was activated by NO/sGC pathway and by $K_V$ channel dependent mechanism.

토끼 위체에서 비-아드레날린 비-콜린성 이완반응의 하행성 감소 (Downward Decrease of Non-adrenergic Non-cholinergic Relaxation in the Rabbit Gastric Body)

  • 홍은주;최지은;박미선;김명우;최수경;홍승철
    • 약학회지
    • /
    • 제41권3호
    • /
    • pp.389-398
    • /
    • 1997
  • Non-adenergic non-cholinergic (NANC) innervation on the circular muscle of the rabbit gastric body was investigated by observing the magnitudy of relaxations induced by the elec trical field stimulation (EFS). Strips were cut from the greater curvature of the gastric body and stimulated with 5s trains of 0.5 ms pulses at 1-20 Hz, 40 V. The EFS induced transient frequency-dependent contractons, followed by a slowly recovering relaxation ewpecially at higher frequency of the EFS. In the presence of atropine and guanethidine, the contractions were virtually abolished, while the frequency-dependent relaxations by the EFS remained unaffected. The magnitude of relaxations progressively decreased as the location of the strips gets closer to the bottom of the gastric body. The relaxations were ablished by tetrodotoxin, indicating that their orgin is the NANC nerve stimulation. NG-nitro-L-arginine (L-NNA, 10-$100{\mu}M$), the inhibitor of nitric oxide (NO)-synthase, caused a concentration-dependent inhibition of the NANC relaxations. The inhibitory effects of L-NNA were not affected gy the location of the strips and were reversed by L-arginine, the precursor of NO-biosynthesis. Hemoglobin (20-$60{\mu}M$), a NO scavenger, inhibited the NANC relaxation s in a concentration-dependent manner. This inhibition was more prominent in the NANC relaxations observed in the lower portion of the gastric body and the relaxations induced ly lower frequencies of the EFS. Methyelne blue (10-$100{\mu}M$), an inhibitor of cytosolic guanylate cyclase, markedly inhibited the NANC relaxations, almost abolishing the response at a higher dose ($100{\mu}M$). These results suggest that NANX innervation of the rabbit gastric body progeressively decrease as he location of the strips gets closer to the bottom of the gastric body, and that the NANC relaxation is primarily mediated by NO-guanosine 3',5'-cyclic monophophate (cyclic GMP).

  • PDF

인간의 Jurkat T세포에서 프로스타글란딘 PGE2) (PGE2)의 cAMP 경로를 통한 인터페론 감마(INF--γ ) 유전자의 methylation (PGE2 Mediated INF-γ Gene Methylation Through cAMP Signaling Pathway in Human Jurkat T Cells)

  • 전병훈;주성민;정재성;김명완;윤용갑;박현;정헌택;한동민;김원신
    • 생명과학회지
    • /
    • 제14권4호
    • /
    • pp.670-675
    • /
    • 2004
  • 본 연구에서 인간의 백혈병세포주인 Jurkat T 세포에서 인터페론 감마(INF-${\gamma}$ 유전자의 methylation에 대한 S-nitroso-N-acetylpenicillamine (SNAP), 프로스타글란딘 $E_2$ (PG $E_2$) 그리고 dibutric cyclic AMP (dbcAMP)의 효과를 조사하였다. 인터페론 감마 유전자의 프로모터기능에 아주 중요한 디뉴클레오티드인 CpG는 SNAP, PG $E_2$, 그리고 dbcAMP를 각각 처리하였을 때 methylation되었다. PG $E_2$에 의해서 유도된 그 methylation은 아데닐산 사이클라제의 저해제의 하나인 2',5'-dideoxyadenosine (DDA)에 의해서 억제되었지만, SNAP에 의해서 유도된 methylation은 DDA에 의해서 억제되지 않았다. PG $E_2$나 dbcAMP를 처리한 세포에서 일산화질소(NO)의 생성의 증가는 나타나지 않았으며, PG $E_2$나 dbcAMP에 의해 유도된 인터페론 감마유전자의 methylation도 일산화질소합 성효소의 저해제인 $N^{G}$ -methyl-L-arginine (L-NMMA)에 의해서 억제되지 않았다. 따라서 인간의 Jurkat T 세포에서 PG $E_2$에 의한 인터페론 감마 유전자의 발현 억제는 세포내의 cAMP생성경로를 통한 인터페론 감마 유전자의 methylation과 연관되어있으나 일산화질소의 생성경로와는 무관한 것으로 보인다.화질소의 생성경로와는 무관한 것으로 보인다.