• Title/Summary/Keyword: L-30

Search Result 13,093, Processing Time 0.039 seconds

In vitro micropropagation of Philodendron cannifolium (기내배양에 의한 Philodendron cannifolium의 대량번식)

  • Han, Bong-Hee;Park, Byoung-Mo
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.203-208
    • /
    • 2008
  • In order to micropropagate uniform plantlets of Philodendron cannifolium in vitro, the shoot tips were cultured on MS media supplemented with $0.5{\sim}10.0$ mg/L BA or $0.05{\sim}0.1$ mg/L thidiazuron(TDZ). The adventitious multi-bud clusters from basal part of shoots were formed on MS media containing $2.0{\sim}5.0$ mg/L BA or $0.05{\sim}0.1$ mg/L TDZ. But the shoots grown on MS media with TDZ showed necrosis by the lack of chlorophyll. The adventitious multi-bus clusters were cut into $5{\sim}7$ mm sections and cultured on MS media containing BA and TDZ for shoot proliferation. Shoots were proliferated vigorously on MS medium supplemented with $1.0{\sim}3.0$ mg/L BA with up to 30 shoots. But abnormally swollen hard calli were formed from basal parts of shoots on MS media with TDZ and high concentration of BA(10.0 mg/L). The proliferated shoots on same media also showed necrosis by the lack of chlorophyll. The shoot growth and rooting were favorable on MS media containing $0.5{\sim}2.0$ mg/L IBA. The rooted plantlets were acclimatizated effectively in soil mixed with perlite 1:vermiculite 1 or vermiculite alone. Fifteen mL of liquid medium containing 10 g/L activated charcoal and 30 g/L sucrose were added in same vessels after small shoots were proliferated to stimulate shoot growth and rooting. After 8 weeks in culture, the shoots were dipped into high concentration of IBA solution. and planted in soil mexed with perlite 1:vermiculite 1. The shoot growth and rooting were favorable in dipping treatments of $500{\sim}2,000$ ppm IBA solutions for 10 sec.

Biodegradation of Diesel with Pseudomonas sp, KDi19 in Liquid Medium (Pseudomonas sp. KDi19를 이용한 액체배지내에서 경유의 생물학적 분해)

  • Yun, Min-Woo;Jeong, Jeong-Hwa;Chang, Soon-Woong;Kong, Sung-Ho;Lee, Jong-Yeol;Kang, Dong-Hyo;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1285-1291
    • /
    • 2005
  • In this study, we isolated bacteria from petroleum contaminated soil which were near to underground storage tanks(UST). Through the screen test, we selected high efficiency bacterium, KDi19, for biodegradation of diesel. KDi19 was identified as Pseudomonas sp. by 16S rDNA, fatty acid, and morphological physiological characteristics. KDi19 degraded 956.3 mg/L(95.6%) of 1,000 mg/L diesel for 48 hours(incubation condition : temperature; $30^{\circ}C$, cell concentration; 1.0 g/L, pH 7). At low temperature, $20^{\circ}C$, $15^{\circ}C$, $10^{\circ}C$, KDi19 respectively removed 63.9%, 18.5% and 17.0% of 1,000 mg/L diesel for 48 hours(cell concentration 1.0 g/L, pH 7). At low concentration of diesel, 50 mg/L and 100 mg/L, KDi19 degraded 97.9% and 96.2% of diesel for 24 hours(temperature; $30^{\circ}C$, cell concentration: 1.0 g/L, pH 7), respectively.

Biogas Production from Sewage Sludge in 30L Microbial Electrolysis Cell (30L 미생물전기분해전지의 하수슬러지로부터 바이오가스 생산 특성)

  • Lee, Myoung-Eun;Ahn, Yongtae;Shin, Seung Gu;Seo, Sun-Chul;Chung, Jae Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.25-33
    • /
    • 2019
  • Operating characteristics of a 30 L microbial electrolysis cell (MEC) for producing biogas from sewage sludge was studied. During the 32-day inoculation period, carbon dioxide concentration decreased and methane concentration increased with operating time, and the overall methane content of biogas was 69.1% with a production rate of 171.6 mL CH4/L·d. In fed-batch experiments for 6 operating cycles, CH4 concentration of 66.5~77.2% was obtained at a production rate of 184.9~372.9 mL CH4/L·d, COD, TS and VS removal efficiency ranged from 28.2 to 42.1%, 20.7 to 37.5% and 18.5 to 36.9%, respectively. The MEC system was observed to be stabilized as operating cycles were repeated after inoculation. In the last operating cycle, 5221 mL/L of methane was produced with CH4 yield of 316.7 L CH4/kg CODrem, and the energy recovery was 73%.

Optimization of γ-Aminobutyric Acid (GABA) Production Using Immobilized Lactobacillus plantarum K154 in Submerged Culture of Ceriporia lacerata (Ceriporia lacerata 배양액과 고정화 Lactobacillus plantarum K154를 이용한 감마아미노뷰티르산 생산 최적화)

  • Lee, Eun-Ji;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.438-445
    • /
    • 2015
  • The production of GABA was optimized by co-cultivation of immobilized Lactobacillus plantarum K154 (ILK) with Ceriporia lacerata cultures. The mycelial culture of C. lacerata was performed in a defined medium containing 3% glucose, 3% soybean flour, and 0.15% $MgSO_4$ in a submerged condition for 7 days at $25^{\circ}C$, resulting in the production of 29.7 g/L mycelia, 3.1 g/L exopolysaccharides, 2% (w/w) ${\beta}$-glucan, 68.96 unit/mL protease, and 10.37 unit/mL ${\alpha}$-amylase. ILK in C. lacerata culture showed viable cell counts of $3.13{\time}10^9CFU/mL$ for immobilized cells and $1.48{\time}10^8CFU/mL$ for free cells after 1 day. GABA production in the free and immobilized cells was 9.96 mg/mL and 6.30 mg/mL, respectively, after 7 days. A recycling test of ILK in the co-fermentation was consequently performed five times at $30^{\circ}C$ for 15 days, resulting in the highest production of GABA. GABA could also be efficiently overproduced by co-cultivation with the produced polysaccharides, ${\beta}$-glucan, peptides, and probiotics.

Analysis of Propionic acid Production in Joraengyi Rice Cake during Storage (조랭이떡 저장 중 천연유래 프로피온산 생성 특성 분석)

  • Park, Hee-Dae;Chae, Jung-Kyu;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.483-487
    • /
    • 2018
  • The objective of this study was to examine the natural origin of propionic acid in rice cakes by investigating the growth characteristics of the microflora and their production of propionic acid in the Joraengyi rice cake during storage period. The experiment was done in two stages within a period of three month: the rice cake fresh and contaminated with cocktail propionibacterium. The propionic acid production was analyzed according to the storage time and temperature by GC-FID (Gas chromatograph with flame ionization detector). During the storage of the fresh Joraengyi rice cake without alcohol at $30^{\circ}C$, about 95 mg/L of propionic acid was detected in 1st week, 330 mg/L in 4th week, 850 mg/L in 6th week, 970 mg/L in 8th week, and 1,040 mg/L in 12th week. During the storage of the Joraengyi rice cake which was contaminated with cocktail propionibacterium at $30^{\circ}C$, about 100 mg/L was detected from the rice cake with alcohol in the 1st week, 270 mg/L in 2nd week, about 470 mg/L in 4th week, and 660 mg/L in 8th week. This study demonstratesd the natural production of propionic acid during storage of the Joraengyi rice cake. To prevent the production, it is necessary to thoroughly manage hygiene and store it at refrigerated temperature or below $20^{\circ}C$.

Inhibition Effect of the Harmful Food-Born Microorganisms on Germination Condition of Acorn Pollen (도토리 화분의 발아 조건에 따른 식품유해균 억제효과)

  • Choi, Jun-Hyug;Yim, Ga-Young;Jang, Se-Young;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 2007
  • This study investigated the antimicrobial effect of germinated acorn pollen solution on harmful food-borne microorganisms. The antimicrobial activity when 8% (w/v) acorn pollen in 10% (w/v) sugar solution was extracted at $30^{\circ}C$ for 4 days. The minimal inhibitory concentration of this germinated acorn pollen solution was $40\;{\mu}L/mL$ for Gram-positive bacteria and $30\;{\mu}L/mL$ for Gram-negative bacteria. Acetic and lactic acids were present at high levels in germinated acom pollen solution. As pollen germination releases heat, the antimicrobial activities are heat-stable. The activities are tolerant of low pH. In summary, acorn pollen germination solution showed active antibiosis and should be developed as a natural preservative material.

Nano-capsulation of L-Ascorbic Acid in Nonaqueous System (L-Ascorbic Acid의 비수계 나노 캡슐화)

  • Hong, Joo-Hee;Song, Ki-Se;Kim, Kyoung-Jun;Lee, Chae-Seong;An, Byeong-Min;Kim, Byoung-Sik
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.604-608
    • /
    • 2008
  • In this work, the basic research for nano-capsulation of L-ascorbic acid (Vitamin C) in nonaqueous system was carried out. 500 nm-sized nano-capsules were prepared in nonaqueous system, and the emulsified capsule had mean size of 410 nm. The stability test on the temperature and the storage periods was performed at 4, 20, and $30^{\circ}C$ for 30 days. After 5 days, L-ascorbic acid was extricated 5.1, 9.3, and 12.5% at each temperature, but only 1~2 % was extricated after the time span. Likewise, the results of the skin susceptibility on women and men, each 10 persons, revealed that the very thin allergy was shown from only a woman after 2 days, but it was not shown from the others.

Development of Alkaline Degreasing Agent for Electroplating Pretreatment Process (도금 전처리공정에서 맞춤형 알칼리계 탈지제 개발)

  • Lee, Seung-Bum;Joeng, Koo-Hyung;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.301-305
    • /
    • 2010
  • In this study, the alkaline degreasing agent was developed for electroplating pretreatment process, and the efficiency and the durability was predicted. The alkaline deeping degreasing agent was prepared by blending sodium hydroxide (NaOH), sodium carbonate ($Na_2CO_3$), sodium silicate ($Na_2SiO_3$), and sodium lauric sulfate (SLS). The performance tests of the degreasing agent were evaluated in the $40{\sim}50^{\circ}C$ of the degreasing temperature and 30~40 min of the degreasing time. The efficiency and durability of the prepared degreasing agent were tested by the waterdrop formation test and Hull-cell plating test. The optimum ratio of alkaline degreasing agent was NaOH (30 g/L) + SLS (6.0 g/L) + $Na_2SiO_3$ (2.0 g/L) + $Na_2CO_3$ (40 g/L). Also, the optimum degreasing conditions were $50^{\circ}C$ of the degreasing temperature and 35 min of the degreasing time.

Identification and Fermentation Characteristics of Lactic Acid Bacteria Isolated from Hahyangju Nuruk (하향주 누룩으로부터 분리한 젖산균의 동정 및 발효 특성)

  • Park, Chi-Duck;Jung, Hee-Kyoung;Park, Hwan-Hee;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.188-193
    • /
    • 2007
  • The purpose of this study was to isolate lactic acid bacteria, useful in the fermentation industry from Hahyangju Nuruk. Five strains were isolated, and identified as Lactobacillus based on growth inhibition by 10% (v/v) alcohol at pH 4.0. Isolated strains were identified to species, and named Lactobacillus plantarum L-3, L. sakei L-10, and L. curvatus strains L-8, L-11, and L-12. Morphological characteristics, physiological data, carbohydrate fermentation patterns, and 16S rRNA sequence data, were all used to characterize the bacterial isolates. L. plantarum L-3 showed the highest lactic acid productivity of all isolates, but grew only poony in the presence of 10% (v/v) alcohol at pH 4.0. The other strains exhibited lower lactic acid productivity than did L. plantarum L-3 and did not grow in the presence of 10% (v/v) alcohol at pH 4.0. The optimal temperature and pH for lactic acid production were $30^{\circ}C$ and pH 6.0 7.0, respectively. The lactic acid productivity of L. plantarum L-3, L. sakei L-10 and the three L. curvatus strains L-8, L-11, and L-12 were (% v/v of culture supematant) 1.55, 1.0, 1.06, 1.0, and 0.99, respectively, at $30^{\circ}C$ and pH 6.0. While L. plantarum L-3 suffered growth inhibition in the presence of 10% (v/v) alcohol, growth of the other strains was inhibited at 8% (v/v) alcohol.

Effects of Thiosulfinates Isolated from Allium tuberosum L. on the Growth of Human Cancer Cells (부추의 함황화합물이 인체 암세포 증식에 미치는 영향)

  • Park, Sun-Young;Kim, Jae-Yong;Park, Kyung-Wuk;Kang, Kap-Suk;Park, Ki-Hun;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.1003-1007
    • /
    • 2009
  • To develop Allium tuberosum L. as a cancer preventive food material, thiosulfinates and biological active components were isolated from Allium tuberosum L. and the apoptotic effects of thiosulfinates in human cancer cells were examined. Thiosulfinates decreased viable cell numbers in dose- and time-dependent manners. Thiosulfinates at the 20 $\mu g$/mL concentration inhibited more than 60% cell proliferation in HepG2 and A549 human cancer cells, respectively. Also the morphology of cells treated with thiosulfinates of 30 $\mu g$/mL concentration was distorted with shrunken cell mass while the cell number was lower than that of control cells. The $IC_{50}$ values in the HepG2 cells were higher than those of the A549 cells. Thiosulfinates at the 30 $\mu g$/mL concentration showed the formation of apoptotic bodies and a nuclear condensation, and an increase in the cell populations of the sub-G1 phase in the HepG2 cells. These results indicate that thiosulfinates from Allium tuberosum L. inhibited cell proliferation in HepG2 via apoptosis.