• 제목/요약/키워드: Kv1.4 channel

검색결과 22건 처리시간 0.015초

Inhibitory effects of the atypical antipsychotic, clozapine, on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells

  • Kang, Minji;Heo, Ryeon;Park, Seojin;Mun, Seo-Yeong;Park, Minju;Han, Eun-Taek;Han, Jin-Hee;Chun, Wanjoo;Ha, Kwon-Soo;Park, Hongzoo;Jung, Won-Kyo;Choi, Il-Whan;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.277-285
    • /
    • 2022
  • To investigate the adverse effects of clozapine on cardiovascular ion channels, we examined the inhibitory effect of clozapine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Clozapine-induced inhibition of Kv channels occurred in a concentration-dependent manner with an half-inhibitory concentration value of 7.84 ± 4.86 µM and a Hill coefficient of 0.47 ± 0.06. Clozapine did not shift the steady-state activation or inactivation curves, suggesting that it inhibited Kv channels regardless of gating properties. Application of train pulses (1 and 2 Hz) progressively augmented the clozapine-induced inhibition of Kv channels in the presence of the drug. Furthermore, the recovery time constant from inactivation was increased in the presence of clozapine, suggesting that clozapine-induced inhibition of Kv channels is use (state)-dependent. Pretreatment of a Kv1.5 subtype inhibitor decreased the Kv current amplitudes, but additional application of clozapine did not further inhibit the Kv current. Pretreatment with Kv2.1 or Kv7 subtype inhibitors partially blocked the inhibitory effect of clozapine. Based on these results, we conclude that clozapine inhibits arterial Kv channels in a concentration-and use (state)-dependent manner. Kv1.5 is the major subtype involved in clozapine-induced inhibition of Kv channels, and Kv2.1 and Kv7 subtypes are partially involved.

Effect of Genistein, a Tyrosine Kinase Inhibitor, on the Cloned Rat Brain Potassium Channel Kv1.5

  • Choi, Bok-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.243-249
    • /
    • 2006
  • The effect of genistein, widely used as a specific tyrosine kinase inhibitor, on rat brain Kv1.5 channels which were stably expressed in Chinese hamster ovary cells was investigated using the whole-cell patch-clamp technique. Genistein inhibited Kv1.5 currents at +50 mV in a concentration-dependent manner, with an $IC_{50}$ of $54.7{\pm}8.2\;{\mu}M$ and a Hill coefficient of $1.1{\pm}0.2$. Pretreatment of Kv1.5 with protein tyrosine kinase inhibitors ($10\;{\mu}M$ lavendustin A and $100\;{\mu}M$ AG1296) and a tyrosine phosphatase inhibitor ($500\;{\mu}M$ sodium orthovanadate) did not block the inhibitory effect of genistein. The inhibition of Kv1.5 by genistein showed voltage-independence over the full activation voltage range positive to 0 mV. The activation (at +50 mV) kinetics was significantly delayed by genistein: time constant for an activation of $1.4{\pm}0.2$ msec under control conditions and $10.0{\pm}1.5$ msec in the presence of $60\;{\mu}M$ genistein. Genistein also slowed the deactivation of the tail currents, resulting in a crossover phenomenon: a time constant of $11.4{\pm}1.3$ msec and $40.0{\pm}4.2$ msec under control conditions and in the presence of $60\;{\mu}M$ genistein, respectively. Inhibition was reversed by the application of repetitive depolarizing pulses, especially during the early part of the activating pulse. These results suggest that genistein directly inhibits Kv1.5 channels, independent of phosphotyrosine-signaling pathway.

Escitalopram, a selective serotonin reuptake inhibitor, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells

  • Kim, Han Sol;Li, Hongliang;Kim, Hye Won;Shin, Sung Eun;Seo, Mi Seon;An, Jin Ryeol;Ha, Kwon-Soo;Han, Eun-Taek;Hong, Seok-Ho;Choi, Il-Whan;Choi, Grace;Lee, Dae-sung;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권4호
    • /
    • pp.415-421
    • /
    • 2017
  • We investigated the inhibitory effect of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on voltage-dependent $K^+$ (Kv) channels in freshly separated from rabbit coronary arterial smooth muscle cells. The application of escitalopram rapidly inhibited vascular Kv channels. Kv currents were progressively inhibited by an increase in the concentrations of escitalopram, suggesting that escitalopram inhibited vascular Kv currents in a concentration-dependent manner. The $IC_{50}$ value and Hill coefficient for escitalopram-induced inhibition of Kv channels were $9.54{\pm}1.33{\mu}M$ and $0.75{\pm}0.10$, respectively. Addition of escitalopram did not alter the steady-state activation and inactivation curves, suggesting that the voltage sensors of the channels were not affected. Pretreatment with inhibitors of Kv1.5 and/or Kv2.1 did not affect the inhibitory action of escitalopram on vascular Kv channels. From these results, we concluded that escitalopram decreased the vascular Kv current in a concentration-dependent manner, independent of serotonin reuptake inhibition.

Sustained $K^+$ Outward Currents are Sensitive to Intracellular Heteropodatoxin2 in CA1 Neurons of Organotypic Cultured Hippocampi of Rats

  • Jung, Sung-Cherl;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권5호
    • /
    • pp.343-348
    • /
    • 2012
  • Blocking or regulating $K^+$ channels is important for investigating neuronal functions in mammalian brains, because voltage-dependent $K^+$ channels (Kv channels) play roles to regulate membrane excitabilities for synaptic and somatic processings in neurons. Although a number of toxins and chemicals are useful to change gating properties of Kv channels, specific effects of each toxin on a particular Kv subunit have not been sufficiently demonstrated in neurons yet. In this study, we tested electro-physiologically if heteropodatoxin2 ($HpTX_2$), known as one of Kv4-specific toxins, might be effective on various $K^+$ outward currents in CA1 neurons of organotypic hippocampal slices of rats. Using a nucleated-patch technique and a pre-pulse protocol in voltage-clamp mode, total $K^+$ outward currents recorded in the soma of CA1 neurons were separated into two components, transient and sustained currents. The extracellular application of $HpTX_2$ weakly but significantly reduced transient currents. However, when $HpTX_2$ was added to internal solution, the significant reduction of amplitudes were observed in sustained currents but not in transient currents. This indicates the non-specificity of $HpTX_2$ effects on Kv4 family. Compared with the effect of cytosolic 4-AP to block transient currents, it is possible that cytosolic $HpTX_2$ is pharmacologically specific to sustained currents in CA1 neurons. These results suggest that distinctive actions of $HpTX_2$ inside and outside of neurons are very efficient to selectively reduce specific $K^+$ outward currents.

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun;Yin, Ming Zhe;Kim, Hae Jin;Vorn, Rany;Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권1호
    • /
    • pp.111-119
    • /
    • 2020
  • In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.

Nitric Oxide-mediated Relaxation by High $K^+$ in Human Gastric Longitudinal Smooth Muscle

  • Kim, Young-Chul;Choi, Woong;Yun, Hyo-Young;Sung, Ro-Hyun;Yoo, Ra-Young;Park, Seon-Mee;Yun, Sei-Jin;Kim, Mi-Jung;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.405-413
    • /
    • 2011
  • This study was designed to elucidate high-$K^+$ induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high $K^+$ (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high $K^+$ (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high $K^+$-induced relaxation. $K^+$ channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium ($Ba^{2+}$) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent $K^+$ channel (KV) blocker, inhibited high $K^+$ -induced relaxation, hence reversing to tonic contraction. High $K^+$-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and KV channel blocker sensitive high $K^+$-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high $K^+$-induced relaxation which was activated by NO/sGC pathway and by $K_V$ channel dependent mechanism.

4-Aminopyridine Inhibits the Large-conductance $Ca^{2+}-activated$ $K^+$ Channel $(BK_{Ca})$ Currents in Rabbit Pulmonary Arterial Smooth Muscle Cells

  • Bae, Young-Min;Kim, Ae-Ran;Kim, Bo-Kyung;Cho, Sung-Il;Kim, Jung-Hwan;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권1호
    • /
    • pp.25-28
    • /
    • 2003
  • Ion channel inhibitors are widely used for pharmacological discrimination between the different channel types as well as for determination of their functional role. In the present study, we tested the hypothesis that 4-aminopyridine (4-AP) could affect the large conductance $Ca^{2+}$-activated $K^+$ channel ($BK_{Ca}$) currents using perforated-patch or cell-attached configuration of patch-clamp technique in the rabbit pulmonary arterial smooth muscle. Application of 4-AP reversibly inhibited the spontaneous transient outward currents (STOCs). The reversal potential and the sensitivity to charybdotoxin indicated that the STOCs were due to the activation of $BK_{Ca}$. The $BK_{Ca}$ currents were recorded in single channel resolution under the cell-attached mode of patch-clamp technique for minimal perturbation of intracellular environment. Application of 4-AP also inhibited the single $BK_{Ca}$ currents reversibly and dose-dependently. The membrane potential of rabbit pulmonary arterial smooth muscle cells showed spontaneous transient hyperpolarizations (STHPs), presumably due to the STOC activities, which was also inhibited by 4-AP. These results suggest that 4-AP can inhibit $BK_{Ca}$ currentsin the intact rabbit vascular smooth muscle. The use of 4-AP as a selective voltage-dependent $K^+$ (KV) channel blocker in vascular smooth muscle, therefore, must be reevaluated.

Alteration of 4-Aminopyridine-Sensitive, Voltage-Dependent $K^+-Channel$ in Arterial Smooth Muscle Cells of One-Kidney, One-Clip Goldblatt Hypertensive Rats

  • Kim, Hoe-Suk;Kim, Se-Hoon;Jeon, Byeong-Hwa;Chang, Seok-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.385-391
    • /
    • 2000
  • Using the patch-clamp technique, we investigated the alteration of 4-aminopyridine(4-AP)-sensitive, voltage-dependent $K^+$ channel (Kv) in the mesenteric arterial smooth muscle cell (MASMC) of renovascular hypertensive model, one-kidney one-clip Goldblatt hypertensive rat (GBH). To isolate $K_V$ current, internal pipette solution contained 5 mM ATP and 10 mM EGTA. Under these condition, MASMC was depolarized by 4-AP, but charybdotoxin did not affect membrane potential. Membrane potential of hypertensive cell $(-40.3{\pm}3.2\;mV)$ was reduced when compared to that of normotensive cell $(-59.5{\pm}2.8\;mV).$ Outward $K^+$ current of hypertensive cell was significantly reduced when compared to normotensive cell. At 60 mV, the outward currents were $19.10{\pm}1.91$ and $14.06{\pm}1.05$ pA/pF in normotensive cell and hypertensive cell respectively. 4-AP-sensitive $K^+$ current was also smaller in hypertensive cell $(4.28{\pm}0.38\;pA/pF)$ than in normotensive cell $(7.65{\pm}0.52\;pA/pF).$ The values of half activation voltage $(V_{1/2})$ and slope factor (k1) as well as the values of half inactivation voltage $(V_{1/2})$ and slope factor (k1) were virtually similar between GBH and NTR. These results suggest that the decrease of 4-AP-sensitive $K^+$ current contributes to a depolarization of membrane potential, which leads to development of vascular tone in GBH.

  • PDF

Diversity of Ion Channels in Human Bone Marrow Mesenchymal Stem Cells from Amyotrophic Lateral Sclerosis Patients

  • Park, Kyoung-Sun;Choi, Mi-Ran;Jung, Kyoung-Hwa;Kim, Seung-Hyun;Kim, Hyun-Young;Kim, Kyung-Suk;Cha, Eun-Jong;Kim, Yang-Mi;Chai, Young-Gyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권6호
    • /
    • pp.337-342
    • /
    • 2008
  • Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to $10^{th}$ passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of $K^+$ currents, including noise-like $Ca^{+2}$-activated $K^+$ current ($IK_{Ca}$), a transient outward $K^+$ current ($I_{to}$), a delayed rectifier $K^+$ current ($IK_{DR}$), and an inward-rectifier $K^+$ current ($K_{ir}$) were heterogeneously present in these cells, and a TTX-sensitive $Na^+$ current ($I_{Na,TTX}$) was also recorded. In the RT-PCR analysis, Kv1.1,, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, ($I_{Na,TTX}$) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs.

세 종류 줄기세포의 특성 분석과 지방유래 줄기세포의 심근세포로의 분화 (Characterization Analysis for Cardiogenic Potential of Three Human Adult Stem Cells)

  • 박세아;강현미;김은수;김진영;김해권
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.167-177
    • /
    • 2007
  • 본 연구에서는 사람의 지방조직(human adipose tissue-derived stem cells, HAD), 탯줄(human umbilical cordderived stem cells, HUC), 그리고 양막(human amnion-derived stem cells, HAM)유래 줄기세포를 분리하여 세포의 형태 및 성장속도를 비교하고, 역전사 중합효소 연쇄반응과 면역세포화학 염색법을 이용하여 유전자와 단백질 발현을 비교 분석하였다. 또한 지방유래 줄기세포를 이용하여 심장근육세포로의 분화를 유도하였다. 본 연구 결과, 탯줄과 양막유래 줄기세포의 형태는 매우 유사하였으며, 지방유래 줄기세포의 형태는 다른 것으로 나타났다. 분열시간은 탯줄유래 줄기세포가 가장 빨랐으나 총 분열 횟수는 양막유래 줄기세포와 같았으며, 지방유래 줄기세포의 총 분열횟수가 가장 많았다. 세 종류 줄기세포의 유전자와 단백질 발현은 비슷한 양상을 나타냈다. 지방세포, 골세포, 연골세포로의 분화 유도 결과 세 종류의 줄기세포 모두 분화 유도되었다. 또한, 심장세포 특이 유전자의 발현 분석 결과 세 종류의 줄기세포에서 유사한 발현 양상을 나타냈다. 이 중 지방유래 줄기세포를 24시간 동안 $10\;{\mu}M$ 5-azacytidine 처리 후 기본 배양액에서 4주 동안 배양하거나 또는 5-azacytidine 처리 후 bone morphogenic protein-2(BMP-2)와 fibroblast growth factor-10(FGF-10) 또는 BMP-4와 FGF-4 또는 BMP-4와 FGF-8이 첨가된 배양액으로 4주 동안 배양하여 심근세포로의 분화를 유도하였다. 분화 유도 후 심장세포 특이 유전자 발현을 분석 결과 cardiac myosin light chain-1(Cmlc-1)과 L-type calcium channel ${\alpha}1C$ subunit(${\alpha}1C$) 유전자의 발현이 증가하였다. 그러나 troponin T(TnT), troponin I(TnI) 그리고 potassium channel Kv4.3 subunit (Kv4.3) 유전자의 발현은 증가하지 않았다. 본 연구 결과, 지방, 탯줄 및 양막유래 줄기세포는 특성이 매우 유사한 것으로 나타났으며, 심장 질환 치료를 목적으로 하는 세포 치료에 이용될 수 있을 것으로 사료된다. 또한, 적절한 배양조건 하에서 성장인자와 cytokine들을 처리하여 심장세포로의 분화 유도가 이루어진다면 임상적용에 유용한 세포로 사용될 수 있을 것으로 사료된다.

  • PDF