• 제목/요약/키워드: Kutta condition

Search Result 77, Processing Time 0.019 seconds

Frequency Domain Analysis of Lifting Problems with Explicit Kutta Condition

  • Kim, Jong-Un;Kim, Gun-Do;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.34-55
    • /
    • 2003
  • Explicit Kutta condition approximation, proved useful in existing time-domain solver of the unsteady propeller problem, requires a specified functional behavior of the vorticity in space near the trailing edge. In this paper, the strength of the discrete vortices is controlled to have a specified behavior in space in the frequency domain approach. A new formulation is introduced and is implemented for analysis of a lifting surface of a rectangular planform. Sample computations carried out according to the new formulation compares well with that of existing unsteady lifting problem in the time domain.

Effects of Upstream Wake Frequency on the Unsteady Boundary Layer Characteristics On a Downstream Blade (상류 후류의 발달 주파수가 하류 익형의 비정상 경계층 거동에 미치는 영향)

  • Bae Sang Su;Kang Dong Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.181-186
    • /
    • 1999
  • The effects of the frequency of upstream gust on the unsteady boundary characteristics on a downstream blade was simulated by using a Navier-Stokes code. The Navier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds k-e turbulence model to close the momentum equations. The MIT flapping foil experiment set-up is used to simulate the interaction between the upstream wake and a blade. The frequency of the upstream wake is simulated by varying rate of pitching motion of the flapping airfoils. Three reduced frequencies. 3.62. 7.24. and 10.86. are simulated. As the frequency increases, the unsteady fluctuation on the surfaces of the downstream hydrofoil is shown to decrease while the upstream flapper wake has larger first harmonics of y-velocity component. The unsteady vortices are shown to interact with each other and. as a result. the upstream wake becomes undiscernible inside the inner layer. The turbulence kinetic energy shows a similar behavior. Limiting streamlines around the trailing edge of the flapper are shown to conform with the unsteady Kutta condition for a round trailing edge. while limiting streamlines around the trailing edge of the hydrofoil conforms with the unsteady Kutta condition for a sharp edge.

  • PDF

Theoretical Analysis of Open Water Characteristics of a Rudder (타 단독 특성의 이론적 해석)

  • I.Y. Gong;C.G. Kang;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.29-42
    • /
    • 1992
  • A potential based panel method is used to predict the open water characteristics of spade-type rudders. The inflow velocity is assumed to be constant in lime and uniform in space. Source and dipole are distributed on the rudder surface. It is assumed that the wake surface is streaming from trailing edge and it is represented by dipole distribution. In this paper, wake geometry is assumed by imposing appropriate conditions at the trailing edge and far from the body. The effects of wake geometry are studied. The pressure Kutta condition is applied at the trailing edge, the effects of which are compared with those of two-dimensional Kutta condition. The results of calculations for a spade-type rudder are compared with published results. It is concluded that this approach shows fairly good agreement with experimental results and can be used in the initial design stage of a rudder.

  • PDF

Development of Steady/Unsteady Aerodynamic Analysis Program Using 3-Dimensional Subsonic Unstructured Panel Method (3차원 아음속 비정렬 패널법을 이용한 정상/비정상 공력 해석 프로그램 개발)

  • Park, Jinyi;Baek, Chung;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.367-376
    • /
    • 2022
  • In this study, a steady and unsteady aerodynamic analysis program using a 3-dimensional subsonic unstructured panel method is developed and verified. Surfaces of bodies are modeled with the source and doublet distributions on triangular or quadrilateral panels. Geometry modeling of complex geometries and multi-body, therefore, can be easily accomplished. The Kelvin theory and the unsteady Kutta condition allow the doublet strength of the wake panels determined for unsteady flows. Various steady and unsteady flows in two and three dimensions are computed and compared with the analytical and the published computational results.

A Study on the Application of Vortex Panel Method to 2 - D Turbo - machinery (2차원 터보기계에서의 와류패널법 적용에 관한 연구)

  • 최민선;김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.44-51
    • /
    • 1993
  • Here is represented a vortex panel method to evaluate the performance characteristics of the 2-dimensional turbomachinery with circular arc blades or logarithmic blades. The present method is characterized by distributing small consecutive panels of linearly varing vortex strength satisfying boundary condition at control points and Kutta condition at trailing edge. To confirm the reliability of the present method, experimental result of a 2-D pump impeller of six circular arc blades is compared with the calculated one. As an application of the present method, figures are presented in series showing velocity and pressure distribution between blades.

  • PDF

Free Vibrations of Multispan Continuous Arches (다경간 연속 아치의 자유진동 해석)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • 본 논문의 다경간 연속아치의 자유진동에 관한 연구이다. 다경간 연속아치의 고유진 동수 및 진ㄷㅇ형을 산출하기 위하여 내부지점의 지점조건에 다른 경계조건식을 유도하였다. 아치의 선형은 포물선을 택하였으며, 회전-로울러-회전, 고정-회전-고정의 지점 조건을 갖는 2경간 연속아치에 대한 수치해석 결과를 제시하였다. Runge-Kutta maethod을 이용 하였다. 실제 수치해석예에서는 회전관성이 고유진동수에 미치는 영향을 고찰 하였으며, 무차원 고유진동수와 아치높이 지간길이비 및 세장비 사이의 관계를 분석하였다. 또한 실험을 토아여 이론적인 해석결과를 검증하였다.

  • PDF

Computation of Turbulent Flow around Wigley Hull Using 4-Stage Runge-Kutta Scheme on Nonstaggered Grid (정규격자계와 4단계 Range-Kutta법을 사용한 Wigley선형 주위의 난류유동계산)

  • Suak-Hp Van;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.87-99
    • /
    • 1994
  • Reynolds Averaged Navier-Stokes equations are solved numerically for the computation of turbulent flow around a Wigley double model. A second order finite difference method is applied for the spatial discretization on the nonstaggered grid system and 4-stage Runge-Kutta scheme for the numerical integration in time. In order to increase the time step, residual averaging scheme of Jameson is adopted. Pressure field is obtained by solving the pressure-Poisson equation with the appropriate Neumann boundary condition. For the turbulence closure, 0-equation turbulence model of Baldwin-Lomax is used. Numerical computation is carried out for the Reynolds number of 4.5 million. Comparisons of the computed results with the available experimental data show good agreements for the velocity and pressure distributions.

  • PDF

A Potential-Based Panel Method for the Analysis of Resistance Characteristics of a High Speed Catamaran (포텐셜기저 패널법에 의한 고속쌍동선의 저항성능 해석)

  • Kim, Y.G.;Rhyu, S.S.;Yoo, J.H.;Lew, J.M.;Hong, S.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.12-20
    • /
    • 1997
  • A potential-based panel method has been developed to investigate the resistance characteristics of a high speed catamaran advancing on the free surface. Normal dipoles and sources are distributed on the body surface while sources are distributed on the free surface. Linearised free surface conditions are used in the present analysis. To avoid the instabilities due to the velocity difference between inner and outer flow of a high speed catamaran, Kutta condition has been applied at the stern. Model test has been carried out not only to validate the numerical results but to confirm the capabilities of a CWC(Circulating Water Channel). It is believed that we can obtain the qualitatively reasonable results in the CWC. Computed results are compared with those of experiments and Insel's experimental values. Since the Kutta condition is applied at the stern, stable solutions are obtained at the high speed range. The present method, using linearised free surface conditions at the high speed range, seems to be a useful tool in the hull form design of a high speed catamaran.

  • PDF

Calculation of Wave Resistance of a Hybrid Hydrofoil (복합지지형 고속선의 조파저항 계산)

  • Yoo, J.H.;Kim, Y.G.;Lew, J.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A potential-based panel method has been developed for numerical computation of wave resistance on a hybrid hydrofoil. Hybrid hydrofoil is composed of a main body, two struts and two hydrofoils. The main body, which is assumed to be an axisymmetric body for the present analysis, is normally used to support displacement of a body with its buoyancy. Normal dipoles and the sources are distributed on the body(main body, struts, hydrofoils) and the sources are distributed on the free surface. Linearized free surface and the radiation conditions are satisfied using the fourth order finite difference operator and the semi-linear pressure Kutta condition is used for the numerical computation of the hydrofoils. Poisson type free surface condition has been used for the numerical computation and hyperboloidal panel method has been used for better numerical accuracy. To verify this numeric method, model tests are performed in circulation water channel. From the comparison of experimental results with numeric ones, the present method can be used as a useful tool for the design of high speed vessels.

  • PDF

A Surface Panel Method for the Analysis of Hydrofoils wih Emphasis on Local Flows around the Leading and Trailing Edges (앞날 및 뒷날 유동 특성을 고려한 표면양력판 이론에 의한 2차원수중익 단면해석)

  • Jin-Tae,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.41-50
    • /
    • 1989
  • A basic formulation of the panel method, which is based on the potential field formulation, is reviewed for the case of two-dimensional hydrofoil problems. Numerical procedures to improve the computational efficiency of the panel method are suggested. By investigating local behavior of the flow around the trailing edge, a wedge type Kutta condition is formulated. By subdividing the trailing edge panels, where dipole strengths of the subdivided panels follow the local behavior of the potential values of the flow outside a wedge, the circulation around a hydrofoil is calculated accurately with a relatively small number of panels. The subdividing technique to improve the accuracy of the numerical Kutta condition is proved to be efficient. A local behavior of the flow around the leading edge is also investigated. By matching the flow around the leading edge with that around a parabola, a very accurate velocity distribution is obtained with relatively small number of panels. An accurate prediction of the stagnation point and the pressure distribution near the leading edge may contribute to improve the accuracy of cavity predictions and boundary layer calculations around hydrofoils.

  • PDF