• Title/Summary/Keyword: Kuroshio region

Search Result 59, Processing Time 0.02 seconds

Distribution Characteristics and Community Structure of Phytoplankton in the Different Water Masses During Early Summer of Southern Sea of Korea (초여름 남해광역권의 수괴별 식물플랑크톤 군집구조 특성)

  • Baek, Seung-Ho;Shin, Kyoung-Soon;Hyun, Bong-Gil;Jang, Pung-Guk;Kim, Hyun-Su;Hwang, Ok-Myung
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • To assess short-term variation of summer phytoplankton community structure in different water masses, phytoplankton and environmental factors were monitored from 31 stations on and off the southern coasts of Korea, from June 18 to June 20 2009. According to multidimensional scaling (MDS) and cluster analysis based on phytoplankton community data from each station, the southern sea was divided into two groups. The first group included stations in the south-eastern region of Jeju Island, which is strongly influenced by the Kuroshio warm current. The second group located along the coastal region of the southern sea, which was mainly comprised of Bacillariophyceae and Crytophyceae. Of these stations, St. 13 and 28 formed a temperature front caused by different hydrological conditions. In particular, nutrients and Chl.a concentrations in these two stations were significantly higher compared to those in the other stations. This indicates that phytoplankton population and subsequent microalgal growth under high nutrient concentrations vary in different water masses. Our results support the theory that phytoplankton community structure in the southern sea of Korea can be influenced on a short-term scale by different water masses and currents.

Statistical Analysis of NOAA/AVHRR High Resolution Weekly SST in the East Sea: Regional Variability and Relationships with ENSO (동해지역 NOAA/AVHRR 고해상도 주평균 해수면 온도의 통계적 분석 : 지역적 변동성과 엘니뇨/남방진동과의 관계성)

  • Kwon, Tae-Yong;Lee, Bang-Yong;Lee, Jeong-Soon
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.361-376
    • /
    • 2001
  • The characteristics of SST variability in the East Sea are analyzed using NOAA/AVHRR weekly SST data with about $0.18^{\circ}{\times}0.18^{\circ}$ resolution ($1981{\sim}2000$) and reconstructed historical monthly SST data with $2^{\circ}{\times}2^{\circ}$ resolution $(1950{\sim}1998)$. The distinct feature of wintertime SST is high variability in the western and eastern parts of $38^{\circ}{\sim}40^{\circ}$ latitudinal band, which are the northern boundary of warm current in the East Sea during winter. However, summertime SST exhibits variability with similar magnitude in the entire region of the East Sea. The analysis of remote correlation also shows that SST in the East Sea is closely correlated with that in the region of Kuroshio in winter, but in summer is related with that in the western and eastern regions of the same latitudes. From these results it is postulated that the SST variability in the East Sea may be related with the variations of East Korean Warm Current and Tsushima Warm Current in winter, but in summer probably with the variations of atmospheric components. In the analysis of ENSO related SST anomaly, a significant negative correlation between SST anomalies in the East Sea and SST anomalies in the tropical Pacific is found in the months of August-October (ASO). The SST in the ASO period shows more significant cooling in E1 $Ni\~{n}o$ events than warming in La $Ni\~{n}a$ events. Also, the regional analysis shows by the Student's t-test that the negative SST anomalies in the E1 $Ni\~{n}o$ events are more significant in the southwestern part of the East Sea.

  • PDF

Construction of Gridded Wind-stress Products over the World Ocean by Tandem Scatterometer Mission

  • Kutsuwada Kunio;Kasahara Minoru;Morimoto Naoki
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.192-195
    • /
    • 2004
  • Products of gridded surface wind and windstress vectors over the world ocean have been constructed by satellite scatterometer data with highly temporal and spatial resolutions. Even if the ADEOS-II/SeaWinds has supplied surface wind data only for short duration in Apr. to Oct. 2003 to us, it permits us to construct a product with higher resolution together with the Qscat/SeaWinds. In addition to our basic product with its resolution of $1^{\circ}\times1^{\circ}$ in space and daily in time, we try to construct products with $1/2^{\circ}\times1/2^{\circ}$ and semi- and quarter-daily resolution. These products are validated by inter-comparison with in-situ data (TAO and NDBC buoys), and also compared with numerical weather prediction(NWP) ones (NCEP reanalysis). Result reveals that our product has higher reliability in the study area than the NCEP's. For the open ocean regions in the middle and high latitudes where there are no in-situ data, we find that there are clear differences between them. Especially in the southern westerly region of 400-600S, the' wind-stress magnitudes by the NCEP are significantly larger than the others, suggesting that they are overestimated. We also calculate wind-stress curl field that is an important factor for ocean dynamics and focus its spatial character in the northwestern Pacific around Japan. Positive curl areas are found to cover from southwest to northeast in our focus region and almost correspond to the Kuroshio path. It is suggested that the vorticity field in the lower atmosphere is related to the upper oceanic one, and thus an aspect of air-sea interaction process.

  • PDF

Phytoplankton Studies in Korean Waters. IV. Phytoplankton in the Adjacent Seas of Korea (한국해역의 식물플랭크톤의 연구. IV. 동해, 남해 및 서해해역의 식물플랭크톤)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.4 no.2
    • /
    • pp.49-67
    • /
    • 1969
  • A quantitative phytoplankton study in Korean waters was commenced in 1964 as a part of the primary production studies of Koreans seas, and it was continued with the cruises for Cooperative Studies of the Kuroshio(C.S.K) in 1965-1968. Phytoplankton samples were taken by dipping about 500ml of sea water from the surface, and then fixed by ading neutralized formlin. This report deals with the results obtained during 1965-1966. I examined a total of 298 samples of surface phytoplankton collected in the wate neighboring Korea in the above-mentioned period, and detected 147 species of diatoms and 22 species of dinoflagellates. Among them 123 species of diatoms and 18 species of dinoflagellates occured in the Japan Sea region, 133 species of diatoms and 11 species of dinoflagellates occured in the Korea Strait region, and 49 species of diatom and 8 species of dinoflagellates occured in the Yellow Sea region. And thd phytoplankton standing crops are dept in a fair abundance in the Japan Sea area all the year round, and are poor in the Yellow Sea area. The seas surrounding Korea are divided into seven regions by the planktological characteristics; northern and southern parts of the Japan Sea, eastern, western and southern parts of the Korea Strait, southern and northern parts of the Yellow Sea. The representative of the phytoplankton community in each sea region is generalized as follows; northern part of the Japan Sea is dominant with Chaetoceros group, southern part of the Japan Sea is dominant with Chaetoceros group and Skeletonema costaum, eastern part of the Korea Strait is dominant with Chaetoceros group and Pleurosigma sp., southern part of the Korea Strait is dominant with Chaetoceros group and Rizosolenia group, western part of the Korea Strait is most poor in phytoplankton, southern part of the Yellow Sea is dominant with Pleurosigma sp. and Coscinodiscus group, and northern part of the Yellow Sea is dominant with Pleurosigma sp. and Eucampia zoodiacus. Chaetoceros curvisetus, Leptocylindrus danicus, Pleurosigma normanii, Thalassionema nitzschioides, Thalassiothrix flauenfeldii appeared all the year round in the neighboring sea of Korea. There were 24 species (18 species of diatoms and 6 species of dinoflagellates) of the pecuriar phytoplankton in the Japan Sea, 27 species (25 species of diatoms and 2 species of dinoflagellates) of that in the Korea, and 7 species (5 species of diatoms and 2 species of dinoflagellates) of that in the Yellow Sea, respectively.

  • PDF

The Relationship between the Characteristics of Dissolved Oxygen and the Tsushima Current in the Japan Sea in Summer (하계 동해의 용존산소 분포특성과 대마난류)

  • HONG Chol Hoon;CHO Kyu Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.291-297
    • /
    • 1983
  • This paper describes the variations of the distribution of dissolved oxygen in the Japan Sea in summer during 1974-1977. In the Tsushima Current region of the Japan Sea the salinity maxima appears frequently in summer and the dissolved oxygen at the salinity maximum is less than that in the Japan Sea Proper Water. The Japan Sea is divided into three parts with respect to the type of vertical profiles of dissolved oxygen: The southern region of about $35^{\circ}N$ which has low dissolved oxygen similar to those in the Kuroshio region, the Japan Sea Proper Water region, and the area between about $36^{\circ}N$ and $40^{\circ}N$ which has high dissolved oxygen. The ranges of the dissolved oxygen and thermosteric anomaly(${\delta}_T$) at the salinity maximum are roughly between 4.9 and 6.5 m/l and between 210 and 240 cl/t respectively. The most frequent ranges of those values are between 5.5 and 5.7 ml/l and between 230 and 240 cl/t. The northern boundary of the Tsushima Current can be known by the characteristics of the distribuion of dissolved oxygen.

  • PDF

Water Masses and Circulations around Korean Peninsula (한반도 주변의 수괴와 해수순환)

  • 승영호
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.324-331
    • /
    • 1992
  • Water masses and circulations around Korean peninsula are briefly described based on recent studies. The results of theses studies are discussed from the physical point of view. Oceanic conditions in this region are largely due to the roles played by the Tsushima Warm Current, an onshore extension of the Kuroshio, and local conditions such as wind, surface heat flux and fresh water input etc. To the south and west of Korea, the northern/western border of the Tsushima Warm Current Water is roughly the line joining Taiwan and Cheju island. In summer, it is affected by large amount of fresh water discharged from the Changjiang and in winter, an intrusion of this water into the Yellow Sea is induced by the prevailing northwesterly monsoon wind. To the east of Korea, the Tsushima Warm Current Water presents roughly south of the line joining the wast coast of Korea near 37-38$^{\circ}$N and Tsugaru-Soya Straits in the northern Japan. But this situation, together with those in deeper layers, may greatly be changed by winter atmospheric conditions (wind and surface heat flux). The seas around Korea are not yet physically well understood and many problems wait physical explanations. Some problems, along with personal views of them, are mentioned.

  • PDF

Analysis of Wave Parametric Characteristics using WAVEWATCH-III Model and Observed Buoy Data (파랑모델과 부이 자료를 이용한 파랑인자 특성 분석)

  • 장유순;서장원;김태희;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.274-284
    • /
    • 2003
  • The analysis of wave parametric characteristics in sea regions in the vicinity of Korean Peninsula have been carried out using the third generation wave model, WAVEWATCH-III (Tolman, 1999) and four observed buoy data of Korea Meteorological Administration (KMA). Significant wave height increases about 2-3 hours later after the increase of wind speed. Maximum correlation coefficient between two parameters appears in Donghae buoy data, which is at off-shore region. When land breeze occurs, it can be found that the correlation coefficient decreases. Time differences between wind speeds and wave heights correspond to significant tidal periods at all of the buoy locations except for Donghae buoy. After verifying the WAVEWATCH-III model results by the comparing with observed buoy data, we have carried out numerical experiments near the Kuroshio current and East Sea areas, and then reconfirmed that when there exist an opposite strong current in the propagation direction of the waves or wind direction, wave height and length get higher and shorter, respectively and vice versa. It has been shown that these modulations of wave parameters are considerable when wind speed is week or mean current is relatively strong, and corresponding values have been represented.

Comparison of Algorithms for Sea Surface Current Retrieval using Himawari-8/AHI Data (Himawari-8/AHI 자료를 활용한 표층 해류 산출 알고리즘 비교)

  • Kim, Hee-Ae;Park, Kyung-Ae;Park, Ji-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • Sea surface currents were estimated by applying the Maximum Cross Correlation (MCC), Zero-mean Sum of Absolute Distances (ZSAD), and Zero-mean Sum of Squared Distances (ZSSD) algorithms to Himawari-8/Advanced Himawari Imager (AHI) thermal infrared channel data, and the comparative analysis was performed between the results of these algorithms. The sea surface currents of the Kuroshio Current region that were retrieved using each algorithm showed similar results. The ratio of errors to the total number of estimated surface current vectors had little difference according to the algorithms, and the time required for sea surface current calculation was reduced by 24% and 18%, relative to the MCC algorithm, for the ZSAD and ZSSD algorithms, respectively. The estimated surface currents were validated against those from satellite-tracked surface drifter and altimeter data, and the accuracy evaluation of these algorithms showed results within similar ranges. In addition, the accuracy was affected by the magnitude of brightness temperature gradients and the time interval between satellite image data.

Application of ROMS-NPZD Coupled Model for Seasonal Variability of Nutrient and Chlorophyll at Surface Layer in the Northwestern Pacific (ROMS-NPZD 접합모델을 이용한 한반도 주변해역의 표층 영양염 및 클로로필의 계절변동성)

  • Lee, Joon-ho;Kim, Tae-hoon;Moon, Jae-hong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • Recently, there has been a growing interest in physical-biological ocean-modeling systems by communities in the fields of science and business. In this paper, we present preliminary results from a coupled physical-biological model for the Northwestern Pacific marginal seas. The ocean circulation component is an implementation of the Regional Ocean Modeling System (ROMS), and the lower trophic level ecosystem component is a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model. The ROMS-NPZD coupled system, with a 25 km resolution, is forced by climatological atmospheric data and predicts the physical variables and concentrations of nitrate, phytoplankton, zooplankton, and detritus. Model results are compared with remote-sensed sea surface temperature and chlorophyll, and with climatological sea surface salinity and nitrate. Our model adequately reproduces the observed spatial distribution and seasonal variability of nitrate and chlorophyll concentrations as well as physical variables, showing a high correlation in the East Sea (ES) and Kuroshio/Oyashio Extension (KOE) region but relatively low correlation in the Yellow Sea (YS) and East China Sea (ECS). Although some deficiencies were found in the biological components, such as the over/underestimation of the intensity of phytoplankton blooms in the ES and KOE/the YS and ECS, our system demonstrates the capability of the model to capture and record dominant seasonal variability in physical-biological processes and this holds out the promise of coming to a better understanding of such processes and making better predictions .

Estimate of Heat Flux in the East China Sea (동지나해의 열속추정에 관한 연구)

  • KIM Young-Seup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.84-91
    • /
    • 1996
  • Heat flux of the East China Sea was estimated with the bulk method, the East China mount based on the marine meteorological data and cloud amount data observed by a satellite. Solar radiation is maximum in May and minimum in December. Its amount decreases gradually southward during the winter half year (from October to March), and increases northward during the summer half year (from April to September) due to the influence of Changma (Baiu) front. The spatial difference of long-wave radiation is relatively small, but its temporal difference is quite large, i.e., the value in February is about two times greater than that in July. The spatial patterns of sensible and latent heat fluxes reflect well the effect of current distribution in this region. The heat loss from the ocean surface is more than $830Wm^{-2}$ in winter, which is five times greater than the net radiation amount during the same period, The annual net heat flux is negative, which means heat loss from the sea surface, in the whole region over the East China Sea. The region with the largest loss of more than $400Wm^{-2}$ in January is observed over the southwestern Kyushu. The annual mean value of solar radiation, long-wave radiation, sensible and latent heat fluxes are estimated $187Wm^{-2},\;-52Wm^{-2},\;-30Wm^{-2}\;and\;-137Wm^{-2}$, respectively, consequently the East China Sea losses the energy of $32Wm^{-2}(2.48\times10^{13}W)$. Through the heat exchange between the air and the sea, the heat energy of $0.4\times10^{13}W$ is supplied from the air to the sea in A region (the Yellow Sea), $2.1\times10^{13}W$ in B region (the East China Sea) and $1.7\times10^{13}W$ in C region (the Kuroshio part), respectively.

  • PDF