• Title/Summary/Keyword: Kuroshio region

Search Result 59, Processing Time 0.022 seconds

A Relationship between the Sea Level Variations in the Korea Strait and the Tokara Strait in the Kuroshio region

  • Hong Chul-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.113-121
    • /
    • 1998
  • A relationship between sea level variations in the Korea Strait (the western and the eastern channels) and the Tokara Strait in the Kuroshio region is examined using daily-mean sea level data from 1966 to 1986. The seasonal variation of the sea level difference (SLD) between Izuhara and Pusan (the western channel) is most periodic: the positive anomalies appear from summer to autumn, and the negative anomalies from winter to spring year to year, whereas SLDs neither between Hakata and Izuhara (the eastern channel) nor between Naze and Nishinoomote (the Tokara Strait) show such a periodic variation. Much similarity has been found between SLDs in the eastern channel and the Tokara Strait, and in particular they were closely correlated in a special event of the Kuroshio region, such as a large meander of the Kuroshio. This paper shows that the periodic seasonal variation of the SLDs in the western channel should be less related to the Kuroshio region. This result also implies that the variation of SLD in the western channel is largely influenced by local factors, such as the bottom cold water in the western channel in summer, rather than from the Kuroshio region.

  • PDF

Seasonal Volume Transport Variation and Origin of the Tsushima Warm Current

  • You, Sung-Hyup;Yoon, Jong-Hwan
    • Ocean and Polar Research
    • /
    • v.30 no.2
    • /
    • pp.193-205
    • /
    • 2008
  • A model of the current and seasonal volume transport in the East China Sea was used to investigate the origin of the Tsushima Warm Current (TSWC). The modeled volume transport field suggested that the current field west of Kyushu ($30^{\circ}-32^{\circ}N$) was divided into two regions, R1 and R2, according to the bottom depth. R1 consisted of the Taiwan Warm Current (TWWC) region and the mixed Kuroshio-TWWC (MKT) water region, while R2 was the modified Kuroshio water (MKW) region west of Kyushu. The MKW branched from the Kuroshio and flowed into the Korea/Tsushima Straits through the Cheju-Kyushu Strait, contributing 41% of the annual mean volume transport of the TSWC. The TWWC and MKT water flowed into the Korea/Tsushima Straits through the Cheju-Kyushu and Cheju Straits, contributing 32% and 27% of the volume transport, respectively. The maximum volume transport of the MKW was 53% of the total volume transport of the TSWC in November, while the maximum volume transport of the water in the R1 region through the Cheju-Kyushu Strait was 41% in July. Hence, there were two peaks per year of volume transport in the TSWC.

A Study on the Results of GEK Measurement in Satsunan Sea of Japan (일본 살남해역의 GEK 측정결과에 대한 연구)

  • Lim, Ki Bong;Fujimoto, Minoru
    • 한국해양학회지
    • /
    • v.6 no.2
    • /
    • pp.99-103
    • /
    • 1971
  • GEK observation had been done in Satsunan sea region (south western region of Kyushu, Japan), mixing sea region of Kuroshio, its count-current and water mass of Eastern China Sea in August 1968. The results are al follows: 1. Observed values by GEK are coincided well with that of ship's drift in the surface water of Kuroshio region. 2. Compared the observed values by GEK with that of dynamic calculation of 800 db, in the eastern area of the surveyed region occupied by Kuroshio water mass, they are coincided well. But not in the western area which is of mixing zone of the Eastern China Sea water mass, Kuroshio and its count-current, showing over 1 knot differences with calculated value are bigger than that of GEK observation.

  • PDF

CIRCULATION AND WATER MASSES IN THE CONTINE NTAL SHELF BREAK REGION OF THE EAST CHINA SEA (동지나해 대륙붕 연변의 해수 유동과 수괴)

  • Lim Gi Bong;Fujimoto Minoru
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1972
  • Studies on the circulation and water masses in the continental shelf break region of the East China Sea are Summerized as follows : 1. The main stream of the Kuroshio flowing north-east near $29^{\circ}N\;Lat\;127^{\circ}E$ tong of the East China Sea in summer is narrow in width. Moving toward east, it becomes twice as wide in Tokora Strait, Japan. 2. In the main stream area of the Kuroshio, the surface Waters in the Upper layer (0-250m) are influenced by the coastal waters of China, and the counter current submerges under the surface water. Therefore, the mixing waters are found in its intermediate layer. 3. Water mass between Amami Island and the continental shelf of the East China Sea consists of main stream water, counter current water, gyration water and mixed water with coastal waters. 4. The maximum velocity of current in this waters was 139cm/sec. The volume transport was estimated approximately as $24.2\;\times\;10^6m^3/sec$. It was less than $33\;\times\;10^6m^3/sec$ in the region between Okinawa and continental shelf of the East China Sea. 5. Surface waters east of $29^{\circ}N\;Lat\;128^{\circ}E$ Long flows toward Amami Island, Okinawa Island, and Hachi Ju San Island, while those west of the region flow toward the Korea-strait, Cheju Island, coastal waters of Kyusyu, and the Pacific Ocean through Tokora Strait. The velocity of the current was estimated approximately as $0.3\~0.5$ miles per hour. 6. The bottom waters in the continental shelf break region flow toward the Korea Strait, Cheju Island and the coastal water of Kyusyu, while that of the continental shelf flows toward the Yellow Sea, 7, The characteristics of the Kuroshio water is changed remarkably by the mixing with the coastal water of China.

  • PDF

ONE TYPE OF EDDY DEVELOPMENT IN THE NORTHEASTERN KUROSHIO BRANCH

  • Bulatov, Nafanail V.;Kapshiter, Alexander V.;Obukhova, Natalya G.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.926-929
    • /
    • 2006
  • Some features of vertical structure of the frontal interaction zone of the warm Kuroshio Current and cold Oyashio Current are known from 1930 from analysis of ship data. Ship data however do not allow carrying out the area detailed survey opposite to satellite infrared (IR) observations which possess by high spatial and temporal resolution. Analysis of NOAA AVHRR IR images demonstrated that process of formation and development of the Kuroshio warm core rings is highly complex. They are formed as a result of development of anticyclonic meanders of the warm Kuroshio waters and spin off them from the current. Joint analysis of thermal infrared images and altimetry data has also indicated that interaction of eddies to the frontal zone plays a crucial role in formation of large eddies moving to the Southern Kuril region.

  • PDF

Outbreak of Water Mass into the East Coast of Japan Evident in the Kuroshio Extension in June 2001

  • Yang Chan-Su;Suga Toshio
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.307-313
    • /
    • 2004
  • The trajectories of 8 autonomous profiling floats deployed in the Kuroshio Extension region in February 2001 are used to depict the circulation pattern at the surface and 2000db. The corresponding sea surface topography maps created from satellite altimeter and dynamic height climatology were compared with the tracks of nearly coincident floats and were found to agree well in most cases except for the period June 5 to 16 2001. It is shown that over the period the conspicuous breakaway of the floats from an expected path is possibly associated with the abnormal path of the Kuroshio Extension such as an outbreak event, as revealed by AVHRR infrared and SeaWiFS chlorophyll-a images and cruise data in cross sections.

Impact of Reconstructed Gridded Product of Global Wind/Wind-stress Field derived by Satellite Scatterometer Data

  • Koyama, Makoto;Kutsuwada, Kunio;Morimoto, Naoki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.309-312
    • /
    • 2008
  • The advent of high resolution products of surface wind and temperature derived by satellite data has permitted us to investigate ocean and atmosphere interaction studies in detail. Especially the Kuroshio extension region of the western North Pacific is considered to be a key area for such studies. We have constructed gridded products of surface wind/wind stress over the world ocean using satellite scatterometer (Qscat/SeaWinds), available as the Japanese Ocean Flux data sets with Use of Remote sensing Observation (J-OFURO). Using new data based on improved algorithm which have been recently delivered, we are reconstructing gridded product with higher spatial resolution. Intercomparison of this product with the previous one reveals that there are some discrepancies between them in short-period and high wind-speed ranges especially in the westerly wind region. The products are validated by not only comparisons with in-situ measurement data by mooring buoys such as TAO/TRITON in the tropical Pacific and the Kuroshio Extension Observation (KEO) buoys, but also intercomparison with numerical weather prediction model (NWPM) products (the NRA-1 and 2). Our products have much smaller mean difference in the study areas than the NWPM ones, meaning higher reliability compared with the NWPM products. Using the high resolution products together with sea surface temperature (SST) data, we examine a new type of relationship between the lower atmosphere and upper ocean in the Kuroshio Extension region. It is suggested that the spatial relation between the wind speed and SST depends upon, more or less, the surrounding oceanic condition.

  • PDF

ANALYSIS AND INTERCOMPARISON OF VARIOUS GLOBAL EVAPORATION PRODUCTS

  • School of Marine Science and Technology, Tokai University, Tsuyoshi Watabe;School of Marine Science and Technology, Tokai University, Masahisa Kubota
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.285-288
    • /
    • 2008
  • We analyzed evaporation data in the Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO) Ver.2. There exists huge evaporation in Gulf Stream, Kuroshio Extension, the ocean dessert and the southern part of the Indian Ocean. The temporal variation of evaporation is overwhelmingly large, of which the standard deviation is more than 120(mm), in the Kuroshio Extension region. Also, the result of harmonic analysis gives that this large variation is closely related to annual variation. In addition, the first EOF mode shows long-term variation showing the maximum amplitude between 1992 and 1994 and remarkable decrease after 1994, and large amplitude in the equatorial region and northeast of Australia. The second and third modes were strongly influenced by El Nino. Moreover, we compared J-OFURO2 evaporation product with other products. We used six kinds of data sets (HOAPS3 and GSSTF2 of satellite data, NRA1, NRA2, ERA40 and JRA25 of reanalysis data) for comparison. Most products show underestimation in the most regions, in particular, in the northern North Pacific, mid-latitudes of the eastern South Pacific, and high-latitudes of the South Pacific compared with J-OFUR02. On the other hand, JRA25 and NRA2 show large overestimation in the equatorial regions. RMS difference between NRA2 and J-OFURO2 in the Kuroshio Extension was significantly large, more than 120(mm).

  • PDF

A Gaussian Jet Model for Deriving Absolute Geostrophic Velocity from Satellite Altimetry

  • Kim, Seung-Bum
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.610-614
    • /
    • 2002
  • Time-mean and absolute geostrophic velocities of the Kuroshio current south of Japan are derived from TOPEX/Poseidon altimeter data using a Gaussian jet model. When compared with simultaneous measurements from a shipboard acoustic Doppler current profiler (ADCP) at two intersection points, the altimetric and ADCP absolute velocities correlate well with the correlation of 0.55 to 0.74. The time-mean velocity is accurate to 1 cm s$^{-1}$ to 5 cm s$^{-1}$. The errors in the absolute and the mean velocities are similar to those reported previously far other currents. The comparable performance suggests the Gaussian jet model is a promising methodology for determining absolute geostrophic velocities, noting that in this region the Kuroshio does not meander sufficiently, which provides unfavorable environment for the performance of the Gaussian jet model.

  • PDF

Geostrophic Velocities Derived from Satellite Altimetry in the Sea South of Japan

  • Kim, Seung-Bum
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.243-253
    • /
    • 2002
  • Time-mean and absolute geostrophic velocities of the Kuroshio current south of Japan are derived from TOPEX/Poseidon altimeter data using a Gaussian jet model. When compared with simultaneous measurements from a shipboard acoustic Doppler current profiler (ADCP) at two intersection points, the altimetric and ADCP absolute velocities correlate well with the correlation coefficient of 0.55 to 0.74. The accuracy of time-mean velocity ranges from 1 cm s$^{-1}$ to 5 cm s$^{-1}$. The errors in the absolute and the mean velocities are similar to those reported previously for other currents. The comparable performance suggests the Gaussian jet model is a promising methodology for determining absolute geostrophic velocities, noting that in this region the Kuroshio does not meander sufficiently and thus provides unfavorable environment for the performance of the Gaussian jet model.