• Title/Summary/Keyword: Kravchuk polynomials

Search Result 1, Processing Time 0.019 seconds

A DIFFERENCE EQUATION FOR MULTIPLE KRAVCHUK POLYNOMIALS

  • Lee, Dong-Won
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1429-1440
    • /
    • 2007
  • Let ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ be a multiple Kravchuk polynomial with respect to r discrete Kravchuk weights. We first find a lowering operator for multiple Kravchuk polynomials ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ in which the orthogonalizing weights are not involved. Combining the lowering operator and the raising operator by Rodrigues# formula, we find a (r+1)-th order difference equation which has the multiple Kravchuk polynomials ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ as solutions. Lastly we give an explicit difference equation for ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ for the case of r=2.