• Title/Summary/Keyword: Kraft paper

Search Result 193, Processing Time 0.031 seconds

Delignification Kinetics of Trema orientalis (Nalita) in Kraft Pulping

  • Jahan, M. Sarwar;Rubaiyat, A.;Sabina, R.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.7-11
    • /
    • 2007
  • Kraft pulping of Trema orientalis (Nalita) was studied in order to find kinetic data for delignification. Pulping runs were carried out in the temperature range of $160-180\;^{\circ}C$ under constant and well-defined conditions. The delignification was found to be first order with respect to residual lignin and was chemically controlled. The rate of delignification reaction was increased 1.11-1.23 for $10\;^{\circ}C$ temperature increase in the range of $160-180\;^{\circ}C$ range. A mean value of 93% of lignin was removed at the transition between bulk and residual delignification. The influence of cooking temperature on the rate constant was expressed by an Arrhenius-type equation. The obtained activation energy of the delignification reaction was 6,164 cal/mol. The transition point between bulk and residual phase was shifted to lower lignin and carbohydrate yield with the increase of temperature.

Study of Rice Husk Pulping for utilization of Rice Husk Fiber (왕겨섬유 활용을 위한 왕겨 펄프화 연구)

  • Oh, Min-Taek;Sun, Yong-Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.63-69
    • /
    • 2012
  • The rice husk is one of the major agricultural residue in KOREA. In this paper, the effects of various pulping conditions on the properties of rice husk pulp and handsheets made of rice husk fiber were evaluated in order to utilize the rice husk as an alternative source for wood pulp. Two typical alkali pulping, such as soda pulping and Kraft pulping were applied with various conditions of the pulping processes. The higher effective alkali and higher pulping temperature resulted in the higher efficiency in removal of lignin and ash, which leaded to the higher strength properties of handsheets made of rice husk fiber, but the lower yield of rice husk pulp. The better efficiency in production of rice husk pulp and the stronger handsheets were obtained by the Kraft pulping.

Kraft Bagasse Pulp Delignification with Dimethyldioxirane

  • Yousef, Hussein-Abou
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.5
    • /
    • pp.25-29
    • /
    • 2001
  • Dimethyldioxirane (DMD), which is a source of active oxygen, is effective agent that can be used in chemical pulp bleaching. In this study, delignification of kraft bagasse pulp has been carried out by using DMD. The effect of the applied charge of DMD (as active oxygen) and pH of the delignification medium were studied. The optimum conditions of the applied DMD charge and pH of the delignification reaction were achieved at pH range from 8~9, 2% of DMD (as active oxygen) and the rest of delignification reaction conditions were $25^{\circ}C$, 60 min, and 12% pulp consistency. The development of brightness per unit kappa number removal (ΔBrightness/ Δ Kappa number) has highest value at the optimum condition. The study showed that the reactivity of kraft bagasse pulp be enhanced to wards alkaline hydrogen peroxide bleaching by pulp treatment with DMD.

  • PDF

Studies on the Multistage Bleaching of Bamboo Chemical Pulps (대나무화학펄프의 다단표백에 관한 연구)

  • 강진하;박성종
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.49-54
    • /
    • 2001
  • This study was carried out to acquire basic data for the bleaching of bamboo chemical pulp. Bamboo chemical pulps (alkaline sulfite (AS)-anthraquinone (AQ) pulp, Kraft pulp) were bleached with two kinds of multistage bleaching methods (CEDED, PDED) using the various kinds of bleaching agents. And, physical properties of bleached pulps were investigated. The conclusions obtained from the results were as follows; The yield of AS-AQ pulp bleached with four-stages bleaching method using the hydrogen peroxide and chlorine dioxide as a bleaching agents was higher than the other bleached pulps. The brightness of kraft pulp bleached with five-stages bleaching method using the chlorine and chlorine dioxide as a bleaching agents was higher than the other bleached pulps. The physical properties of kraft pulp bleached with four-stages bleaching method using the hydrogen peroxide and chlorine dioxide as a bleaching agents was higher than the other bleached pulps.

  • PDF

Improvement of Pulp Handsheet Strength Properties by Polylactic Acids

  • Hou, Q.X.;Chai, X.S.;Yang, R.;Ragauskas, A.J.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.395-400
    • /
    • 2006
  • Polylactic acids polymer (PLA) was applied as an additive to improve the strength properties of handsheets prepared from three unbleached southern pine kraft pulps with different kappa number and an aspen bleached chemithermomechanical pulp (BCTMP). The results showed that PLA could greatly improve the tensile and burst strength of the pulp handsheets. Heat pressing effect was also important to enhance the strength properties. For unbleached kraft pulps, it was found that an appropriate amount of residual lignin in pulps had a positive effect on the handsheets strength improvement when adding PLA. The thickness of the handsheet did not change the PLA strengthening effect. In general, PLA effect on tear strength improvement could be neglected. However, it had a significant effect on the improvement of tear strength for the aspen BCTMP handsheets not containing sufficient amount of fines.

  • PDF

Utilization of Kraft Black Liquor as Resin Binders (접착제(接着劑)로서 크라프트 리그닌 폐액(廢液)의 이용(利用))

  • Park, Kwang-Man;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • A kraft black liquor obtained from pulping of pine (Pinus densiflora Sieb et Zucc) was used for producing three kinds of adhesive such as black liquor-phenol formaldehyde resin, methyloeated kraft lignin-phenol formaldehyde resin, and lignin cake-phenol resin. In case of producing black liquor-phenol formaldehyde resin, about 60 percent of the phenolic resin could be replaced by black liquor. Also the optimal press condition appeared to be $160^{\circ}C$ for 7 min. (l5.77Kg/$cm^2$ in dry test, 8.54Kg/$cm^2$ in 4 hr. boil test). Phenol could be substituted up to 80-90 percent by methylolated kraft lignin. The suitable conditions of factors affecting bond quality were pH to 2.6, methanol as solvent and 0.2ml formaldehyde per 1g of the adhesives, respectively. The optimal press condition was $150^{\circ}C$ for 4 min. (188.54Kg/$cm^2$ in dry test, 10.08Kg/$cm^2$ in 4 hr. boil test). In preparing lignin cake-phenol resin, a suitable mixing ratio of phenol to powered kraft lignin was one to one by weight. The optimal press condition was $150^{\circ}C$ for 4 min.(18.46Kg/$cm^2$ in dry test, 12.31Kg/$cm^2$ in 4 hr. hoil test).

  • PDF

Kraft Lignin Biodegradation by Dysgonomonas sp. WJDL-Y1, a New Anaerobic Bacterial Strain Isolated from Sludge of a Pulp and Paper MillS

  • Duan, Jing;Liang, Jidong;Wang, Yiping;Du, Wenjing;Wang, Dongqi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1765-1773
    • /
    • 2016
  • Wastewater containing kraft lignin (KL) discharged from pulp and paper industries could cause serious environmental contamination. Appropriate effluent treatment is required to reduce the pollution. Investigations on anaerobic bacteria capable of degrading KL are beneficial to both lignin removal and biofuel regeneration from the effluent. In this paper, an anaerobic strain capable of degrading KL was isolated from the sludge of a pulp and paper mill and identified as Dysgonomonas sp. WJDL-Y1 by 16S rRNA analysis. Optimum conditions for KL degradation by strain WJDL-Y1 were obtained at initial pH of 6.8, C:N ratio of 6 and temperature of 33℃, based on statistical analyses by response surface methodology. For a 1.2 g/l KL solution, a COD removal rate of 20.7% concomitant with biomass increase of 17.6% was achieved after 4 days of incubation under the optimum conditions. After the treatment by strain WJDL-Y1, KL was modified and degraded.

Effects of Alkaline Treatment on the Characteristics of Chemical Pulps for Papermaking (알칼리 처리가 제지용 화학펄프의 특성에 미치는 영향)

  • Won, Jong-Myoung;Kim, Min-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.106-112
    • /
    • 2011
  • The effects of alkaline treatment on the WRV, crystalline structure and sheet structure of softwood and hardwood bleached kraft pulp were investigated. Sodium hydroxide and sodium carbonate were used as chemicals for alkaline treatment and two levels of alkali dosage (5%, 10%) were applied respectively. Alkali treated and untreated pulp were refined to three levels (550, 450 and 350 mL CSF). WRV of the alkali treated pulps depended on the alkaline type and concentration. It was found that the crystalline structures of softwood and hardwood pulp were not changed by refining. Sodium carbonate and lower concentration of sodium hydroxide treatment did not caused any modification of cellulose crystalline structure, while higher concentration of sodium hydroxide treatment caused the partial modification of cellulose crystalline structure. Alkaline treatment of hardwood bleached kraft pulp led to the shrinkage of fiber diameter and bulky structure of sheet. Alkaline treatment of softwood bleached kraft pulp did not cause the significant change in fiber shrinkage and bulk of sheet.

Impact of Lignin Determination Method on Oxygen Delignification Chemistry

  • Shin Soo-Jeong;Lai Yuan-Zong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.5 s.113
    • /
    • pp.50-55
    • /
    • 2005
  • In previous report, we investigated the impact of hexeneuronic acid and some residual extractiveson lignin determination. These non-lignin components severely interfered lignin content determination which also affect on the oxygen delignification comparison between aspen and pine unbleached kraft pulps. Very different pattern was observed whether based on uncorrected conventional kappa number or based on corrected kappa number in oxygen delignification comparison. Lower kappa number aspen pulps showed poor response to oxygen delignification when kappa number was used as lignin determination method but better response with using the acid lignin method. Phenolic hydroxyl group in kraft pulps were also compared based on uncorrected or corrected kappa numberfor lignin content. Based on uncorrected kappa number, lower kappa number oxygen-delignified pulps had lower phenolic hydroxyl group. However, lower kappa number oxygen-delignified pulps showed much higher phenolic hydroxyl group based on the corrected lignin content. For accurate comparison for residual lignin properties from different pulps, lignin determination should be corrected from non-lignin components contribution to lignin.