• Title/Summary/Keyword: Kozeny-Carmen equation

Search Result 2, Processing Time 0.015 seconds

Prediction of Permeability in Cohesive Soils (점성토의 투수계수 예측)

  • Lee, Sang-Hyun;Lee, Moon-Se
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.409-415
    • /
    • 2009
  • Kozeny-Carman equation has been generally applied to prediction of permeability for soil. The Kozeny-Carman equation has indicated fairly good results in prediction of sandy soils, but it is known that the equation is not appropriate for fine-grained soils such as cohesive soils. Therefore, a theoretical equation based on Kozeny-Carman equation is proposed to predict of permeability for cohesive soils in this paper. To develop the theoretical equation, soil properties of cohesive soil existed in the coastal areas and compacted cohesive soil used for the core of a dam were investigated and analyzed. As the results of this limited study, the most related factors between soil properties and permeability were #200 passing percentage for compacted cohesive soil, and clay content for cohesive soil at the coast areas.

Saturated Hydraulic Conductivity of Surface Seals Estimated from Computed Tomography-Measured Porosity (고해상도 X-ray CT 를 이용한 토양표면 피막의 공극율 및 포화수리전도도 측정)

  • Lee, Sang-Soo;Gantzer, C.J.;Thompson, A.L.;Anderson, S.H.;Ketchum, R.A.;Ok, Yong-Sik
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.207-222
    • /
    • 2011
  • Relationships between soil saturated hydraulic conductivity ($K_s$) and porosity (${\phi}$) have been developed over many years; however, use of these relationships for evaluating rain-induced seals is limited mainly because of difficulties in estimating seal pore-size characteristics. The objectives of this study were to evaluate the $K_s$ of soil surface seals over a range of thicknesses, where seal thickness was determined using a High-Resolution-Computed-Tomography (HRCT) scanner, and to investigate relationships between $K_s$ and ${\phi}$ of developing seals in samples with equivalent diameters (e.d.) ${\geq}15\;{\mu}m$. A Mexico silt loam soil was packed to a bulk density (${\rho}_b$) of $1.1\;Mg\;m^{-3}$ in cylinders 160-mm i.d. by 160-mm long and subjected to $61-mm\;h^{-1}$ simulated rainfall having a kinetic energy (KE) of $25\;J\;m^{-2}\;min^{-1}$ for 7.5, 15, 30, and 60 min to create a range in seal development. Thicknesses of the seal layers were determined by analysis of HRCT images of seals. The $K_s$ values of the seals were estimated using an effective $K_s$ value ($K_{s-eff}$). The $K_s-{\phi}$ relationship was described by a Kozeny and Carmen equation, $K_s=B{\phi}^n$; where B and n are empirical constants and n = 31. This approach explained 86% of the variation between $K_s$ and ${\phi}$ within the soil seals. Knowledge of surface seal information and hydraulic conductivity can provide useful information to use in management of sites prone to sealing formation.

  • PDF