• Title/Summary/Keyword: Korean validation

Search Result 5,957, Processing Time 0.038 seconds

Design of Validation System for a Crypto-Algorithm Implementation (암호 알고리즘 구현 적합성 평가 시스템 설계)

  • Ha, Kyeoung-Ju;Seo, Chang-Ho;Kim, Dae-Youb
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.4
    • /
    • pp.242-250
    • /
    • 2014
  • Conventional researches of standard tool validating cryptographic algorithm have been studied for the internet environment, for the mobile internet. It is important to develop the validation tool for establishment of interoperability and convenience of users in the information systems. Therefore, this paper presents the validation tool of Elliptic Curve Cryptography algorithm that can test if following X9.62 technology standard specification. The validation tool can be applied all information securities using DES, SEED, AES, SHA-1/256/384/512, RSA-OAEP V2.0, V2.1, ECDSA, ECKCDSA, ECDH, etc. Moreover, we can enhance the precision of validation through several experiments and perform the validation tool in the online environment.

Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments (실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류)

  • Jung, Kwang-Bon;Choi, Mi-Jung;Kim, Myung-Sup;Won, Young-J.;Hong, James W.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.707-718
    • /
    • 2008
  • The methodology of classifying traffics is changing from payload based or port based to machine learning based in order to overcome the dynamic changes of application's characteristics. However, current state of traffic classification using machine learning (ML) algorithms is ongoing under the offline environment. Specifically, most of the current works provide results of traffic classification using cross validation as a test method. Also, they show classification results based on traffic flows. However, these traffic classification results are not useful for practical environments of the network traffic monitoring. This paper compares the classification results using cross validation with those of using split validation as the test method. Also, this paper compares the classification results based on flow to those based on bytes. We classify network traffics by using various feature sets and machine learning algorithms such as J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, and NaiveBayes. In this paper, we find the best feature sets and the best ML algorithm for classifying traffics using the split validation.

Developing a Molecular Prognostic Predictor of a Cancer based on a Small Sample

  • Kim Inyoung;Lee Sunho;Rha Sun Young;Kim Byungsoo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.195-198
    • /
    • 2004
  • One Important problem in a cancer microarray study is to identify a set of genes from which a molecular prognostic indicator can be developed. In parallel with this problem is to validate the chosen set of genes. We develop in this note a K-fold cross validation procedure by combining a 'pre-validation' technique and a bootstrap resampling procedure in the Cox regression . The pre-validation technique predicts the microarray predictor of a case without having seen the true class level of the case. It was suggested by Tibshirani and Efron (2002) to avoid the possible over-fitting in the regression in which a microarray based predictor is employed. The bootstrap resampling procedure for the Cox regression was proposed by Sauerbrei and Schumacher (1992) as a means of overcoming the instability of a stepwise selection procedure. We apply this K-fold cross validation to the microarray data of 92 gastric cancers of which the experiment was conducted at Cancer Metastasis Research Center, Yonsei University. We also share some of our experience on the 'false positive' result due to the information leak.

  • PDF

Improvement of Neural Network Performance for Estimating Defect Size of Steam Generator Tube using Multifold Cross-Validation (다중겹 교차검증 기법을 이용한 증기세관 결함크기 예측을 위한 신경회로망 성능 향상)

  • Kim, Nam-Jin;Jee, Su-Jung;Jo, Nam-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.73-79
    • /
    • 2012
  • In this paper, we study on how to determine the number of hidden layer neurons in neural network for predicting defect size of steam generator tube. It was reported in the literature that the number of hidden layer neurons can be efficiently determined with the help of cross-validation. Although the cross-validation provides decent estimation performance in most cases, the performance depends on the selection of validation set and rather poor performance may be led to in some cases. In order to avoid such a problem, we propose to use multifold cross-validation. Through the simulation study, it is shown that the estimation performance of defect width (defect depth, respectively) attains 94% (99.4%, respectively) of the best performance achievable among the considered neuron numbers.

OVERVIEW OF KOMPSAT APPLICATION PRODUCT VALIDATION SITE AND THE RELATED ACTIVITIES

  • Lee, Kwang-Jae;Youn, Bo-Yeol;Kim, Duk-Jin;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.122-125
    • /
    • 2007
  • In recent years, there has been an increasing demand for improved accuracy and reliability of Earth Observation Satellite (EOS) data. Most of the data users in the field of remote sensing require understanding of product accuracy and uncertainty. Especially, EOS application products should be validated for practical application in the field. In order to evaluate the availability and applicability of application products, it will be necessary to establish a systematic validation system including techniques, equipments, ground truth data, etc. The Product Validation Site (PVS) for generation and validation of KOMPSAT application products was designed and established with various in-situ equipment and dataset. This paper presents the status of PVS and summarizes some results from experiment studies at PVS.

  • PDF

A VALIDATION METHOD FOR EMERGENCY OPERATING PROCEDURES OF NUCLEAR POWER PLANTS BASED ON DYNAMIC MULTI-LEVEL FLOW MODELING

  • QIN WEI;SEONG POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.118-126
    • /
    • 2005
  • While emergency operating procedures (EOPs) occupy an important role in the management of various abnormal situations in nuclear power plants (NPPs), current technology for the validation of EOPs still largely depends on manual review. A validation method for EOPs of NPPs is thus proposed based on dynamic multi-level flow modeling (MFM). The MFM modeling procedure and the EOP validation procedure are developed and provided in the paper. Application of the proposed method to EOPs of an actual NPP shows that the proposed method provides an efficient means of validating EOPs. It is also found that the information on state transitions in MFM models during the management of abnormal situations is also useful for further analysis on EOPs including their optimization.

Development and Validation of a Prediction Model: Application to Digestive Cancer Research (예측모형의 구축과 검증: 소화기암연구 사례를 중심으로)

  • Yonghan Kwon;Kyunghwa Han
    • Journal of Digestive Cancer Research
    • /
    • v.11 no.3
    • /
    • pp.157-164
    • /
    • 2023
  • Prediction is a significant topic in clinical research. The development and validation of a prediction model has been increasingly published in clinical research. In this review, we investigated analytical methods and validation schemes for a clinical prediction model used in digestive cancer research. Deep learning and logistic regression, with split-sample validation as an internal or external validation, were the most commonly used methods. Furthermore, we briefly introduced and summarized the advantages and disadvantages of each method. Finally, we discussed several points to consider when conducting prediction model studies.

The Precision Validation of the Precise Baseline Determination for Satellite Formation

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2011
  • The needs for satellite formation flying are gradually increasing to perform the advanced space missions in remote sensing and observation of the space or Earth. Formation flying in low Earth orbit can perform the scientific missions that cannot be realized with a single spacecraft. One of the various techniques of satellite formation flying is the determination of the precise baselines between the satellites within the formation, which has to be in company with the precision validation. In this paper, the baseline of Gravity Recovery and Climate Experiment (GRACE) A and B was determined with the real global positioning system (GPS) measurements of GRACE satellites. And baseline precision was validated with the batch and sequential processing methods using K/Ka-band ranging system (KBR) biased range measurements. Because the proposed sequential method validate the baseline precision, removing the KBR bias with the epoch difference instead of its estimation, the validating data (KBR biased range) are independent of the data validated (GPS-baseline) and this method can be applied to the real-time precision validation. The result of sequential precision validation was 1.5~3.0 mm which is similar to the batch precision validation.

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

Validation Data Augmentation for Improving the Grading Accuracy of Diabetic Macular Edema using Deep Learning (딥러닝을 이용한 당뇨성황반부종 등급 분류의 정확도 개선을 위한 검증 데이터 증강 기법)

  • Lee, Tae Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.48-54
    • /
    • 2019
  • This paper proposed a method of validation data augmentation for improving the grading accuracy of diabetic macular edema (DME) using deep learning. The data augmentation technique is basically applied in order to secure diversity of data by transforming one image to several images through random translation, rotation, scaling and reflection in preparation of input data of the deep neural network (DNN). In this paper, we apply this technique in the validation process of the trained DNN, and improve the grading accuracy by combining the classification results of the augmented images. To verify the effectiveness, 1,200 retinal images of Messidor dataset was divided into training and validation data at the ratio 7:3. By applying random augmentation to 359 validation data, $1.61{\pm}0.55%$ accuracy improvement was achieved in the case of six times augmentation (N=6). This simple method has shown that the accuracy can be improved in the N range from 2 to 6 with the correlation coefficient of 0.5667. Therefore, it is expected to help improve the diagnostic accuracy of DME with the grading information provided by the proposed DNN.