• Title/Summary/Keyword: Korean traditional music classification

Search Result 18, Processing Time 0.02 seconds

Korean Traditional Music Genre Classification Using Sample and MIDI Phrases

  • Lee, JongSeol;Lee, MyeongChun;Jang, Dalwon;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1869-1886
    • /
    • 2018
  • This paper proposes a MIDI- and audio-based music genre classification method for Korean traditional music. There are many traditional instruments in Korea, and most of the traditional songs played using the instruments have similar patterns and rhythms. Although music information processing such as music genre classification and audio melody extraction have been studied, most studies have focused on pop, jazz, rock, and other universal genres. There are few studies on Korean traditional music because of the lack of datasets. This paper analyzes raw audio and MIDI phrases in Korean traditional music, performed using Korean traditional musical instruments. The classified samples and MIDI, based on our classification system, will be used to construct a database or to implement our Kontakt-based instrument library. Thus, we can construct a management system for a Korean traditional music library using this classification system. Appropriate feature sets for raw audio and MIDI phrases are proposed and the classification results-based on machine learning algorithms such as support vector machine, multi-layer perception, decision tree, and random forest-are outlined in this paper.

Determining Key Features of Recognition Korean Traditional Music Using Spectrogram

  • Kim Jae Chun;Kwak Kyung Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2E
    • /
    • pp.67-70
    • /
    • 2005
  • To realize a traditional music recognition system, some characteristics pertinent to Far East Asian music should be found. Using Spectrogram, some distinct attributes of Korean traditional music are surveyed. Frequency distribution, beat cycle and frequency energy intensity within samples have distinct characteristics of their own. Experiment is done for pre-experimentation to realize Korean traditional music recognition system. Using characteristics of Korean traditional music, $94.5\%$ of classification accuracy is acquired. As Korea, Japan and China have the same musical roots, both in instruments and playing style, analyzing Korean traditional music can be helpful in the understanding of Far East Asian traditional music.

Mathematics in Korean Traditional Music (한국 음악 속의 수학)

  • Kim Ki-Won;Ahn Sun-Phill
    • Journal for History of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.65-76
    • /
    • 2004
  • Even though mathematics and music play very different roles in our society, they are closely related to each other. In this paper, we studies relations between mathematics and Korean traditional music, and give some ideas to use such relations in mathematics education.

  • PDF

An Implementation of Automatic Genre Classification System for Korean Traditional Music (한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현)

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper proposes an automatic genre classification system for Korean traditional music. The Proposed system accepts and classifies queried input music as one of the six musical genres such as Royal Shrine Music, Classcal Chamber Music, Folk Song, Folk Music, Buddhist Music, Shamanist Music based on music contents. In general, content-based music genre classification consists of two stages - music feature vector extraction and Pattern classification. For feature extraction. the system extracts 58 dimensional feature vectors including spectral centroid, spectral rolloff and spectral flux based on STFT and also the coefficient domain features such as LPC, MFCC, and then these features are further optimized using SFS method. For Pattern or genre classification, k-NN, Gaussian, GMM and SVM algorithms are considered. In addition, the proposed system adopts MFC method to settle down the uncertainty problem of the system performance due to the different query Patterns (or portions). From the experimental results. we verify the successful genre classification performance over $97{\%}$ for both the k-NN and SVM classifier, however SVM classifier provides almost three times faster classification performance than the k-NN.

A Study of the 780 Music of DDC (DDC에 있어서의 음악분야 분류상의 제문제)

  • Hahn Kyung-Shin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.26
    • /
    • pp.75-112
    • /
    • 1994
  • The purpose of this study is to investigate the problems concerning 780 music division of DDC. The object is especially arrangement of 780 music in the 20th edition of DDC which is the complete revision. The result is summarized as follows : 1. Although music is an important subject in humanities, especially in arts, it was classified as one division (780) not class. 2. The arrangement of 780 music is severely west-oriented music theory, vocal music and instrumental music. 3. Classification number of 780 music becomes longer because of the limitation of decimal notation. 4. 780 music division of DDC neglects music theory and emphasizes music practicing, especially performance. 5. The assignment of classification number is unbalanced, especially between theory and practice, composition and performance, and among sub-sections of vocal and instrumental music. 6. Many important subject are omitted in DDC music schedule, for example, musicology and branches of musicology, composition and traditional instruments of many countries. 7. Employment of terminology is often improper and inconsistant.

  • PDF

A Method for Measuring the Difficulty of Music Scores

  • Song, Yang-Eui;Lee, Yong Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.39-46
    • /
    • 2016
  • While the difficulty of the music can be classified by a variety of standard, conventional methods are classified by the subjective judgment based on the experience of many musicians or conductors. Music score is difficult to evaluate as there is no quantitative criterion to determine the degree of difficulty. In this paper, we propose a new classification method for determining the degree of difficulty of the music. In order to determine the degree of difficulty, we convert the score, which is expressed as a traditional music score, into electronic music sheet. Moreover, we calculate information about the elements needed to play sheet music by distance of notes, tempo, and quantifying the ease of interpretation. Calculating a degree of difficulty of the entire music via the numerical data, we suggest the difficulty evaluation of the score, and show the difficulty of music through experiments.

A Study on the Korean Music Schedules of KDC (한국십진분류법 한국음악 분류체계에 관한 연구)

  • Hahn, Kyungshin
    • Journal of Korean Library and Information Science Society
    • /
    • v.43 no.4
    • /
    • pp.297-316
    • /
    • 2012
  • The purpose of this study is to investigate the problems concerning the arrangement of 679 Korean music schedules in the fifth edition of KDC and to propose improvements of that problems. In this study, therefore, the theoretical knowledge background of Korean music is examined first. Then, the development of 679 Korean music section and subsection from first edition to the fifth edition of KDC were examined. And the expansion aspects and their problems of 679 Korean music of the fifth edition of KDC were analyzed and some suggestions to solve that problems were proposed.

A Study on ISAR Imaging Algorithm for Radar Target Recognition (표적 구분을 위한 ISAR 영상 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.294-303
    • /
    • 2008
  • ISAR(Inverse Synthetic Aperture Radar) images represent the 2-D(two-dimensional) spatial distribution of RCS (Radar Cross Section) of an object, and they can be applied to the problem of target identification. A traditional approach to ISAR imaging is to use a 2-D IFFT(Inverse Fast Fourier Transform). However, the 2-D IFFT results in low resolution ISAR images especially when the measured frequency bandwidth and angular region are limited. In order to improve the resolution capability of the Fourier transform, various high-resolution spectral estimation approaches have been applied to obtain ISAR images, such as AR(Auto Regressive), MUSIC(Multiple Signal Classification) or Modified MUSIC algorithms. In this study, these high-resolution spectral estimators as well as 2-D IFFT approach are combined with a recently developed ISAR image classification algorithm, and their performances are carefully analyzed and compared in the framework of radar target recognition.

Classification of Korean Traditional Musical Instruments Using Feature Functions and k-nearest Neighbor Algorithm (특성함수 및 k-최근접이웃 알고리즘을 이용한 국악기 분류)

  • Kim Seok-Ho;Kwak Kyung-Sup;Kim Jae-Chun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • Classification method used in this paper is applied for the first time to Korean traditional music. Among the frequency distribution vectors, average peak value is suggested and proved effective comparing to previous classification success rate. Mean, variance, spectral centroid, average peak value and ZCR are used to classify Korean traditional musical instruments. To achieve Korean traditional instruments automatic classification, Spectral analysis is used. For the spectral domain, Various functions are introduced to extract features from the data files. k-NN classification algorithm is applied to experiments. Taegum, gayagum and violin are classified in accuracy of 94.44% which is higher than previous success rate 87%.

  • PDF

Structural Analysis Algorithm for Automatic Transcription 'Pansori' (판소리 자동채보를 위한 구조분석 알고리즘)

  • Ju, Young-Ho;Kim, Joon-Cheol;Seo, Kyoung-Suk;Lee, Joon-Whoan
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.28-38
    • /
    • 2014
  • For western music there has been a volume of researches on music information analysis for automatic transcription or content-based music retrieval. But it is hard to find the similar research on Korean traditional music. In this paper we propose several algorithms to automatically analyze the structure of Korean traditional music 'Pansori'. The proposed algorithm automatically distinguishes between the 'sound' part and 'speech' part which are named 'sori' and 'aniri', respectively, using the ratio of phonetic and pause time intervals. For rhythm called 'jangdan' classification the algorithm makes the robust decision using the majority voting process based on template matching. Also an algorithm is suggested to detect the bar positions in the 'sori' part based on Kalman filter. Every proposed algorithm in the paper works so well enough for the sample music sources of 'Pansori' that the results may be used to automatically transcribe the 'Pansori'.