• 제목/요약/키워드: Korean text classification

검색결과 413건 처리시간 0.028초

A Sliding Window-based Multivariate Stream Data Classification (슬라이딩 윈도우 기반 다변량 스트림 데이타 분류 기법)

  • Seo, Sung-Bo;Kang, Jae-Woo;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • 제33권2호
    • /
    • pp.163-174
    • /
    • 2006
  • In distributed wireless sensor network, it is difficult to transmit and analyze the entire stream data depending on limited networks, power and processor. Therefore it is suitable to use alternative stream data processing after classifying the continuous stream data. We propose a classification framework for continuous multivariate stream data. The proposed approach works in two steps. In the preprocessing step, it takes input as a sliding window of multivariate stream data and discretizes the data in the window into a string of symbols that characterize the signal changes. In the classification step, it uses a standard text classification algorithm to classify the discretized data in the window. We evaluated both supervised and unsupervised classification algorithms. For supervised, we tested Bayesian classifier and SVM, and for unsupervised, we tested Jaccard, TFIDF Jaro and Jaro Winkler. In our experiments, SVM and TFIDF outperformed other classification methods. In particular, we observed that classification accuracy is improved when the correlation of attributes is also considered along with the n-gram tokens of symbols.

Deep Image Annotation and Classification by Fusing Multi-Modal Semantic Topics

  • Chen, YongHeng;Zhang, Fuquan;Zuo, WanLi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.392-412
    • /
    • 2018
  • Due to the semantic gap problem across different modalities, automatically retrieval from multimedia information still faces a main challenge. It is desirable to provide an effective joint model to bridge the gap and organize the relationships between them. In this work, we develop a deep image annotation and classification by fusing multi-modal semantic topics (DAC_mmst) model, which has the capacity for finding visual and non-visual topics by jointly modeling the image and loosely related text for deep image annotation while simultaneously learning and predicting the class label. More specifically, DAC_mmst depends on a non-parametric Bayesian model for estimating the best number of visual topics that can perfectly explain the image. To evaluate the effectiveness of our proposed algorithm, we collect a real-world dataset to conduct various experiments. The experimental results show our proposed DAC_mmst performs favorably in perplexity, image annotation and classification accuracy, comparing to several state-of-the-art methods.

Discovering Hidden Emotional Heterogeneity of Customers in Textual Reviews and its Influencing Factors

  • Nasa Zata Dina;Sri Devi Ravana;Norisma Idris;Tseng-Ping Chiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권10호
    • /
    • pp.2920-2942
    • /
    • 2024
  • E-commerce platforms are recognizing the value of customer experience and are dedicating sections for customers to share reviews of the product purchased. Therefore, this study aimed to analyze Online Customer Review (OCR) to identify hidden emotion expressed about the purchasing experience and further identify factors relating to the product. Text-based emotion classification is a prominent and growing field to better understand human emotions. An integrated Information Gain-Recursive Feature Elimination (IG-RFE) and stacking ensemble learning were implemented to develop a predictive emotion classification model to identify the hidden emotions of the customers. Additionally, the Latent Dirichlet Allocation (LDA) model was used to extract the influencing factors, providing further insight in OCR. The study extracted eight emotions from OCR and seven influencing factors from product's attributes. The emotions included anger, anticipation, disgust, fear, happiness, sadness, surprise, and trust while the identified factors were quality, brand credibility, product functionality, usability, appearance, price, and functional effect. The extracted emotions and factors from the OCR provided valuable knowledge on the study. The findings showed knowledge gaps in emotion classification and customer behavior fields, suggesting further investigation for future study.

A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification (감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Korean Journal of Cognitive Science
    • /
    • 제19권4호
    • /
    • pp.499-517
    • /
    • 2008
  • In this paper, we propose an effective emotion feature extraction method for Korean and evaluate their availability in sentiment classification. Korean emotion features are expanded from several representative emotion words and they play an important role in building in an effective sentiment classification system. Firstly, synonym information of English word thesaurus is used to extract effective emotion features and then the extracted English emotion features are translated into Korean. To evaluate the extracted Korean emotion features, we represent each document using the extracted features and classify it using SVM(Support Vector Machine). In experimental results, the sentiment classification system using the extracted Korean emotion features obtained more improved performance(14.1%) than the system using content-words based features which have generally used in common text classification systems.

  • PDF

Word Segmentation in Handwritten Korean Text Lines based on GAP Clustering (GAP 군집화에 기반한 필기 한글 단어 분리)

  • Jeong, Seon-Hwa;Kim, Soo-Hyung
    • Journal of KIISE:Software and Applications
    • /
    • 제27권6호
    • /
    • pp.660-667
    • /
    • 2000
  • In this paper, a word segmentation method for handwritten Korean text line images is proposed. The method uses gap information to segment words in line images, where the gap is defined as a white run obtained after vertical projection of line images. Each gap is assigned to one of inter-word gap and inter-character gap based on gap distance. We take up three distance measures which have been proposed for the word segmentation of handwritten English text line images. Then we test three clustering techniques to detect the best combination of gap metrics and classification techniques for Korean text line images. The experiment has been done with 305 text line images extracted manually from live mail pieces. The experimental result demonstrates the superiority of BB(Bounding Box) distance measure and sequential clustering approach, in which the cumulative word segmentation accuracy up to the third hypothesis is 88.52%. Given a line image, the processing time is about 0.05 second.

  • PDF

A Classification Model for Illegal Debt Collection Using Rule and Machine Learning Based Methods

  • Kim, Tae-Ho;Lim, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • 제26권4호
    • /
    • pp.93-103
    • /
    • 2021
  • Despite the efforts of financial authorities in conducting the direct management and supervision of collection agents and bond-collecting guideline, the illegal and unfair collection of debts still exist. To effectively prevent such illegal and unfair debt collection activities, we need a method for strengthening the monitoring of illegal collection activities even with little manpower using technologies such as unstructured data machine learning. In this study, we propose a classification model for illegal debt collection that combine machine learning such as Support Vector Machine (SVM) with a rule-based technique that obtains the collection transcript of loan companies and converts them into text data to identify illegal activities. Moreover, the study also compares how accurate identification was made in accordance with the machine learning algorithm. The study shows that a case of using the combination of the rule-based illegal rules and machine learning for classification has higher accuracy than the classification model of the previous study that applied only machine learning. This study is the first attempt to classify illegalities by combining rule-based illegal detection rules with machine learning. If further research will be conducted to improve the model's completeness, it will greatly contribute in preventing consumer damage from illegal debt collection activities.

A Study on Hangul Handwriting Generation and Classification Mode for Intelligent OCR System (지능형 OCR 시스템을 위한 한글 필기체 생성 및 분류 모델에 관한 연구)

  • Jin-Seong Baek;Ji-Yun Seo;Sang-Joong Jung;Do-Un Jeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제23권4호
    • /
    • pp.222-227
    • /
    • 2022
  • In this paper, we implemented a Korean text generation and classification model based on a deep learning algorithm that can be applied to various industries. It consists of two implemented GAN-based Korean handwriting generation models and CNN-based Korean handwriting classification models. The GAN model consists of a generator model for generating fake Korean handwriting data and a discriminator model for discriminating fake handwritten data. In the case of the CNN model, the model was trained using the 'PHD08' dataset, and the learning result was 92.45. It was confirmed that Korean handwriting was classified with % accuracy. As a result of evaluating the performance of the classification model by integrating the Korean cursive data generated through the implemented GAN model and the training dataset of the existing CNN model, it was confirmed that the classification performance was 96.86%, which was superior to the existing classification performance.

The Study on the Effective Automatic Classification of Internet Document Using the Machine Learning (기계학습을 기반으로 한 인터넷 학술문서의 효과적 자동분류에 관한 연구)

  • 노영희
    • Journal of Korean Library and Information Science Society
    • /
    • 제32권3호
    • /
    • pp.307-330
    • /
    • 2001
  • This study experimented the performance of categorization methods using the kNN classifier. Most sample based automatic text categorization techniques like the kNN classifier reduces the feature set of the training documents. We sought to find out which percentage reductions in the feature set would result in high performances. In addition, the kNN classifier has to find the k number of training documents most similar to the test documents in the training documents. We sought to verify the most appropriate k value through experiments.

  • PDF

A Query Classification Method for Question Answering on a Large-Scale Text Data (대규모 문서 데이터 집합에서 Q&A를 위한 질의문 분류 기법)

  • 엄재홍;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.253-255
    • /
    • 2000
  • 어떠한 질문에 대한 구체적 해답을 얻고 싶은 경우, 일반적인 정보 검색이 가지는 문제점은 검색 결과가 사용자가 찾고자 하는 답이라 하기 보다는 해답을 포함하는(또는 포함하지 않는) 문서의 집합이라는 점이다. 사용자가 후보문서를 모두 읽을 필요 없이 빠르게 원하는 정보를 얻기 위해서는 검색의 결과로 문서집합을 제시하기 보다는 실제 원하는 답을 제공하는 시스템의 필요성이 대두된다. 이를 위해 기존의 TF-IDF(Term Frequency-Inversed Document Frequency)기반의 정보검색의 방삭에 자연언어처리(Natural Language Processing)를 이용한 질문의 분류와 문서의 사전 표지(Tagging)를 사용할 수 있다. 본 연구에서는 매년 NIST(National Institute of Standards & Technology)와 DARPA(Defense Advanced Research Projects Agency)주관으로 열리는 TREC(Text REtrieval Conference)중 1999년에 열린 TREC-8의 사용자의 질문(Question)에 대한 답(Answer)을 찾는 ‘Question & Answer’문제의 실험 환경에서 질문을 특징별로 분류하고 검색 대상의 문서에 대한 사전 표지를 이용한 정보검색 시스템으로 사용자의 질문(Question)에 대한 해답을 보다 정확하고 효율적으로 제시할 수 있음을 실험을 통하여 보인다.

  • PDF

Automatic Text Classification Method Using Keywords and Unlabeled Text (주제어와 미분류 문서들을 이용한 문서의 자동 분류 방법)

  • Lee Kang-Il;Lee Chang-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.592-594
    • /
    • 2005
  • 문서를 분류하기 위해서는 분류주제에 맞춰 미리 분류가 된 자료(labeled data)가 필요하다. 하지만 미리 분류가 된 자료를 만들기 위해서는 사람이 직접 그 문서의 의미를 해석하고 일일이 분류를 해야 하기 때문에 시간이 많이 소모가 된다. 본 논문에서는 비록 사랑이 직접 분류한 자료를 이용하는 것에 비해서 분류 정확도는 조금 떨어지지만, 대신 주제어와 미분류 문서(unlabeled data)를 이용해서 문서를 분류하는 방법을 제시하려고 한다. 이와 같은 주제어와 미분류 문서의 경우에는 구하기가 쉽고, 사랑이 일일이 분류하는 작업이 필요로 하지 않기 때문에 비용과 시간이 크게 절약이 된다는 장정이 있다.

  • PDF