• Title/Summary/Keyword: Korean plant

Search Result 41,444, Processing Time 0.059 seconds

Plant Virus Genomics

  • Ryu, Ki-Hyun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2002.09a
    • /
    • pp.196.1-196
    • /
    • 2002
  • PDF

Seroprevalence of Q-fever in Korean native cattle (국내 서식 한우에서 큐열 항체 양성율 조사)

  • Kim, Ji-Yeon;Sung, So-Ra;Pyun, Ji-In;Her, Moon;Kang, Sung-Il;Lee, Hyang-Keun;Jung, Suk Chan
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.3
    • /
    • pp.147-150
    • /
    • 2014
  • Q-fever is a vector-borne (Coxiella [C.] burnetii) zoonotic disease that is an increasing public health concern. To date, some research about Q-fever prevalence in dairy herds and human patients has been reported in Korea, but information about Korean native cattle is scarce. To measure the prevalence rates of C. burnetii in Korean native cattle, a total of 1,095 bovine serum samples collected during 2010~2013 were analyzed with an enzyme-linked immunosorbent assay. Sixty-eight heads of cattle were diagnosed as positive and while 19 heads were suspected (positive rate = 6.2%). Interestingly, Jeju province had a seropositivity rate six times greater than that of other provinces (18.9% vs. 3.2%). High seroprevalence might be caused by wide distribution of ticks in Jeju province compared to other regions. Based on these data, extensive monitoring of C. burnetii infection in cattle, tick distribution, and climate changes is required.

Salicylic Acid as a Safe Plant Protector and Growth Regulator

  • Koo, Young Mo;Heo, A Yeong;Choi, Hyong Woo
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Since salicylic acid (SA) was discovered as an elicitor of tobacco plants inducing the resistance against Tobacco mosaic virus (TMV) in 1979, increasing reports suggest that SA indeed is a key plant hormone regulating plant immunity. In addition, recent studies indicate that SA can regulate many different responses, such as tolerance to abiotic stress, plant growth and development, and soil microbiome. In this review, we focused on the recent findings on SA's effects on resistance to biotic stresses in different plant-pathogen systems, tolerance to different abiotic stresses in different plants, plant growth and development, and soil microbiome. This allows us to discuss about the safe and practical use of SA as a plant defense activator and growth regulator. Crosstalk of SA with different plant hormones, such as abscisic acid, ethylene, jasmonic acid, and auxin in different stress and developmental conditions were also discussed.

Phenological Changes of Wheat Cultivars with Plant Type and Plant Spacing

  • Lee Choon-Woo;Baek Seong-Bum;She Sea-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.5
    • /
    • pp.332-335
    • /
    • 2005
  • The three Korean wheat cultivars with different plant types; the erect, the middle and the creeping growth habit, were studied for their utilization to solar radiation, temperature changes on the furrow and to provide optimum planting space for producing the high yield in 2003. The average solar radiation rate was lowest for creeping type ($39.2\%$) and highest for erect type ($75.8\%$) The correlation coefficient between the coverage rate and the solar transmission rate was r = 0.8624 which was significant at $5\%$ level. The relative growth of the plant, tiller rate and leaf size was increased in the erect and the middle type at lower plant density, while no change on plant growth at creeping type regardless of plant density. The increase of leaf size in the lower plant density was due to longer flag and the first leaf than those of other plant types. The temperature on the furrow of growing plants was changed by the canopy. The changes in temperature pattern on the furrow according to plant types during winter season was different compared to the non plant ground. The temperature of the nonplant ground was the lowest due to solar reduction increasing the amount of cool air flowing in the furrow.

Phytophthora Species, New Threats to the Plant Health in Korea

  • Hyun, Ik-Hwa;Choi, Woobong
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.331-342
    • /
    • 2014
  • Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.