• Title/Summary/Keyword: Korean music classification

Search Result 125, Processing Time 0.024 seconds

Korean Traditional Music Genre Classification Using Sample and MIDI Phrases

  • Lee, JongSeol;Lee, MyeongChun;Jang, Dalwon;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1869-1886
    • /
    • 2018
  • This paper proposes a MIDI- and audio-based music genre classification method for Korean traditional music. There are many traditional instruments in Korea, and most of the traditional songs played using the instruments have similar patterns and rhythms. Although music information processing such as music genre classification and audio melody extraction have been studied, most studies have focused on pop, jazz, rock, and other universal genres. There are few studies on Korean traditional music because of the lack of datasets. This paper analyzes raw audio and MIDI phrases in Korean traditional music, performed using Korean traditional musical instruments. The classified samples and MIDI, based on our classification system, will be used to construct a database or to implement our Kontakt-based instrument library. Thus, we can construct a management system for a Korean traditional music library using this classification system. Appropriate feature sets for raw audio and MIDI phrases are proposed and the classification results-based on machine learning algorithms such as support vector machine, multi-layer perception, decision tree, and random forest-are outlined in this paper.

A Study of the Classification of Korean Music Materials (한국음악자료 분류에 관한 연구)

  • Hahn Kyung-Shin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.32 no.2
    • /
    • pp.5-34
    • /
    • 1998
  • The purpose of this study is to develop an idealistic scheme for the classification of Korean music. The ideal classification of Korean music should cover as much knowledge and materials of Korean music as possible. In this study, therefore, Korean music, Korean musicology and music materials were examined first as the backgrounds. Then classification schedules for Korean music including 679 Korean music of KDC were selected, and their expansion aspects and the problems were analyzed. The conditions and the possibility of developing an ideal classification schedule of Korean music were sought through reanalyzing the problems found in these existing classification schedules. As the result of this study a new classification schedule of Korean music was proposed.

  • PDF

Children's Music Cognition: Comparison of Identification, Classification, and Seriation in Music Tasks (아동의 음악 인지 : 음악의 동일성·유목화·서열화 인지 비교)

  • Kim, Keum Hee;Yi, Soon Hyung
    • Korean Journal of Child Studies
    • /
    • v.20 no.3
    • /
    • pp.259-273
    • /
    • 1999
  • This studied investigated children's music identification, classification, and seriation cognitive task performance abilities by age and sex. The subjects were l20 six-, eight-, and ten-year-old school children. There were significant positive correlations among music cognition tasks and significant age and sex differences within each of the music tasks. Ten-year-old children were more likely to complete their music identification tasks than the younger children and girls were more likely than boys to complete their music identification tasks. Eight- and 10-year-old children were more likely to complete their music classification tasks than the younger group. Piagetian stage theory was demonstrated in children's music classification task performance. There was an age-related increase in the performance of the music seriation tasks. Developmental sequential theory was demonstrated in music seriation performance.

  • PDF

Study of Music Classification Optimized Environment and Atmosphere for Intelligent Musical Fountain System (지능형 음악분수 시스템을 위한 환경 및 분위기에 최적화된 음악분류에 관한 연구)

  • Park, Jun-Heong;Park, Seung-Min;Lee, Young-Hwan;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.218-223
    • /
    • 2011
  • Various research studies are underway to explore music classification by genre. Because sound professionals define the criterion of music to categorize differently each other, those classification is not easy to come up clear result. When a new genre is appeared, there is onerousness to renew the criterion of music to categorize. Therefore, music is classified by emotional adjectives, not genre. We classified music by light and shade in precedent study. In this paper, we propose the music classification system that is based on emotional adjectives to suitable search for atmosphere, and the classification criteria is three kinds; light and shade in precedent study, intense and placid, and grandeur and trivial. Variance Considered Machines that is an improved algorithm for Support Vector Machine was used as classification algorithm, and it represented 85% classification accuracy with the result that we tried to classify 525 songs.

The Classification of Music Styles on the Basis of Spectral Contrast Features

  • Wang, Yan-bing
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In this paper, we propose that the contrast features of octave spectrum can be used to show spectral contrast features of some music clips. It shows the relative spectral distribution rather than average spectrum. From the experiment, it can be seen the method of spectral contrast features has a good performance in classification of music styles. Another comparative experiment shows that the method of spectral contrast features can better distinguish different music styles than the method of MFCC features that commonly used previously in the classification system of music styles.

A Study of the 780 Music of DDC (DDC에 있어서의 음악분야 분류상의 제문제)

  • Hahn Kyung-Shin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.26
    • /
    • pp.75-112
    • /
    • 1994
  • The purpose of this study is to investigate the problems concerning 780 music division of DDC. The object is especially arrangement of 780 music in the 20th edition of DDC which is the complete revision. The result is summarized as follows : 1. Although music is an important subject in humanities, especially in arts, it was classified as one division (780) not class. 2. The arrangement of 780 music is severely west-oriented music theory, vocal music and instrumental music. 3. Classification number of 780 music becomes longer because of the limitation of decimal notation. 4. 780 music division of DDC neglects music theory and emphasizes music practicing, especially performance. 5. The assignment of classification number is unbalanced, especially between theory and practice, composition and performance, and among sub-sections of vocal and instrumental music. 6. Many important subject are omitted in DDC music schedule, for example, musicology and branches of musicology, composition and traditional instruments of many countries. 7. Employment of terminology is often improper and inconsistant.

  • PDF

Emotion Transition Model based Music Classification Scheme for Music Recommendation (음악 추천을 위한 감정 전이 모델 기반의 음악 분류 기법)

  • Han, Byeong-Jun;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • So far, many researches have been done to retrieve music information using static classification descriptors such as genre and mood. Since static classification descriptors are based on diverse content-based musical features, they are effective in retrieving similar music in terms of such features. However, human emotion or mood transition triggered by music enables more effective and sophisticated query in music retrieval. So far, few works have been done to evaluate the effect of human mood transition by music. Using formal representation of such mood transitions, we can provide personalized service more effectively in the new applications such as music recommendation. In this paper, we first propose our Emotion State Transition Model (ESTM) for describing human mood transition by music and then describe a music classification and recommendation scheme based on the ESTM. In the experiment, diverse content-based features were extracted from music clips, dimensionally reduced by NMF (Non-negative Matrix Factorization, and classified by SVM (Support Vector Machine). In the performance analysis, we achieved average accuracy 67.54% and maximum accuracy 87.78%.

  • PDF

An Implementation of Automatic Genre Classification System for Korean Traditional Music (한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현)

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper proposes an automatic genre classification system for Korean traditional music. The Proposed system accepts and classifies queried input music as one of the six musical genres such as Royal Shrine Music, Classcal Chamber Music, Folk Song, Folk Music, Buddhist Music, Shamanist Music based on music contents. In general, content-based music genre classification consists of two stages - music feature vector extraction and Pattern classification. For feature extraction. the system extracts 58 dimensional feature vectors including spectral centroid, spectral rolloff and spectral flux based on STFT and also the coefficient domain features such as LPC, MFCC, and then these features are further optimized using SFS method. For Pattern or genre classification, k-NN, Gaussian, GMM and SVM algorithms are considered. In addition, the proposed system adopts MFC method to settle down the uncertainty problem of the system performance due to the different query Patterns (or portions). From the experimental results. we verify the successful genre classification performance over $97{\%}$ for both the k-NN and SVM classifier, however SVM classifier provides almost three times faster classification performance than the k-NN.

Opera Clustering: K-means on librettos datasets

  • Jeong, Harim;Yoo, Joo Hun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • With the development of artificial intelligence analysis methods, especially machine learning, various fields are widely expanding their application ranges. However, in the case of classical music, there still remain some difficulties in applying machine learning techniques. Genre classification or music recommendation systems generated by deep learning algorithms are actively used in general music, but not in classical music. In this paper, we attempted to classify opera among classical music. To this end, an experiment was conducted to determine which criteria are most suitable among, composer, period of composition, and emotional atmosphere, which are the basic features of music. To generate emotional labels, we adopted zero-shot classification with four basic emotions, 'happiness', 'sadness', 'anger', and 'fear.' After embedding the opera libretto with the doc2vec processing model, the optimal number of clusters is computed based on the result of the elbow method. Decided four centroids are then adopted in k-means clustering to classify unsupervised libretto datasets. We were able to get optimized clustering based on the result of adjusted rand index scores. With these results, we compared them with notated variables of music. As a result, it was confirmed that the four clusterings calculated by machine after training were most similar to the grouping result by period. Additionally, we were able to verify that the emotional similarity between composer and period did not appear significantly. At the end of the study, by knowing the period is the right criteria, we hope that it makes easier for music listeners to find music that suits their tastes.

A Method for Measuring the Difficulty of Music Scores

  • Song, Yang-Eui;Lee, Yong Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.39-46
    • /
    • 2016
  • While the difficulty of the music can be classified by a variety of standard, conventional methods are classified by the subjective judgment based on the experience of many musicians or conductors. Music score is difficult to evaluate as there is no quantitative criterion to determine the degree of difficulty. In this paper, we propose a new classification method for determining the degree of difficulty of the music. In order to determine the degree of difficulty, we convert the score, which is expressed as a traditional music score, into electronic music sheet. Moreover, we calculate information about the elements needed to play sheet music by distance of notes, tempo, and quantifying the ease of interpretation. Calculating a degree of difficulty of the entire music via the numerical data, we suggest the difficulty evaluation of the score, and show the difficulty of music through experiments.