• Title/Summary/Keyword: Korean mtDNA

Search Result 482, Processing Time 0.026 seconds

First Record of the Omura's Whale (Balaenoptera omurai) in Korean Waters

  • Kim, Ji Hye;Kim, Hyun Woo;Kim, Eun-Mi;Sohn, Hawsun
    • Animal Systematics, Evolution and Diversity
    • /
    • v.34 no.3
    • /
    • pp.162-167
    • /
    • 2018
  • To confirm the genetic identification and phylogenetic relationships of unidentified 6 baleen whales by-caught from 2002 to 2016, a partial sequence of approximately 500 base pair (bp) of the mitochondrial DNA (mtDNA) control region was analyzed and compared to published sequence from Genbank. Our results indicated that the two individuals among 6 specimens are clustered with Omura's whale clade through phylogenetic analysis, which had only a single haplotype. Omura's whale was reclassified as a new species in 2003 and they had not been previously reported in Korean waters. This study firstly revealed existence of Omura's whale in Korean waters by molecular analysis based on mtDNA control region.

Cloning of a matrix metalloproteinase cDNA from Scylliorhinus torazame (두툽상어 matrix metalloproteinase 유전자 cDNA의 클로닝)

  • Kim, Jon Won;Cho, Won Jin;Chun, Kwang Ho;Kim, Kyu-Won;Kim, Yung-Jin;Lee, Sang-Jun;Shin, Hae-Ja;Lim, Woon Ki
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.235-240
    • /
    • 1998
  • Matrix metalloproteinases(MMPs) are a group of zinc enzymes responsible for degradation of the matrix components such as collagen and proteoglycans in normal embryogenesis and remodeling and in many disease processes such as arthritis, cancer, periodontitis, and osteprocess. Genetically distince MMPs have been characterized and their genes have been cloned thus far from a variaty of species but not from fishes. In this stydy, a mmp cDNA was cloned by using RT-PCR(reverse transcriptase dependent polymerase chain reaction) from Scylliorhinus toraxzame(shark), agroup of cartilaginous fish, abundant in the coast of Pusan, Korea. It has 74% base homologue with membrane type matrix matalloproteinase-3 genes(mt3-mmps) from human, rat and chick, and also shows more than 90% residue homologue with them. In addition, it has cysteine switch domain, zinc binding domain(HExGH motif), propeptide cleavage site, and RRKR motif, which are present in MMPs. This result indicates that cDNA fragment cloned here may be mt3-mmp or its analogous gejne cDNA fragment of Scylliorhinus torzame.

  • PDF

Genetic analysis of mitochondrial DNA from ancient Equus caballus bones found at archaeological site of Joseon dynasty period capital area

  • Hong, Jong Ha;Oh, Chang Seok;Kim, Sun;Kang, In Uk;Shin, Dong Hoon
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1141-1150
    • /
    • 2022
  • Objective: To understand the domestication and spread of horses in history, genetic information is essential. However, mitogenetic traits of ancient or medieval horses have yet to be comprehensively revealed, especially for East Asia. This study thus set out to reveal the maternal lineage of skeletal horse remains retrieved from a 15th century archaeological site (Gongpyeongdong) at Old Seoul City in South Korea. Methods: We extracted DNA from the femur of Equus caballus (SNU-A001) from Joseon period Gongpyeongdong site. Mitochondrial (mt) DNA (HRS 15128-16116) of E. caballus was amplified by polymerase chain reaction. Cloning and sequencing were conducted for the mtDNA amplicons. The sequencing results were analyzed by NCBI/BLAST and phylogenetic tool of MEGA7 software. Results: By means of mtDNA cytochrome b and D-loop analysis, we found that the 15th century Korean horse belonged to haplogroup Q representing those horses that have historically been raised widely in East Asia. Conclusion: The horse is unique among domesticated animals for the remarkable impact it has on human civilization in terms of transportation and trade. Utilizing the Joseon-period horse remains, we can obtain clues to reveal the genetic traits of Korean horse that existed before the introduction of Western horses.

Sexual Reproduction in Unicellular Green Alga Chlamydomonas (수염녹두말속(Chlamydomonas) 단세포 녹조의 유성생식)

  • Lee, Kyu Bae
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.100-121
    • /
    • 2017
  • The sexual reproduction of the unicellular green alga Chlamydomonas is reviewed for a comprehensive understanding of the complex processes. The sexual life cycle of C. reinhardtii is distinguished into five main stages: gametogenesis, gamete activation, cell fusion, zygote maturation, and meiosis and germination. Gametogenesis is induced by nitrogen starvation in the environment. C. reinhardtii has two mating types: mating type plus ($mt^+$) and mating type minus ($mt^-$), controlled by a single complex mating type locus ($MT^+$ or $MT^-$) on linkage group VI. In the early gametogenesis agglutinins are synthesized. The $mt^+$ and $mt^-$ agglutinins are encoded by the autosomal genes SAG1 (Sexual AGglutination1) and SAD1 (Sexual ADhesion1), respectively. The agglutinins are responsible for the flagellar adhesion of the two mating type of gametes. The flagellar adhesion initiates a cAMP mediated signal transduction pathways and activates the flagellar tips. In response to the cAMP signal, mating structures between two flagella are activated. The $mt^+$ and $mt^-$ gamete-specific fusion proteins, Fus1 and Hap2/Gcs1, are present on the plasma membrane of the two mating structures. Contact of the two mating structures leads to develop a fertilization tubule forming a cytoplasmic bridge between the two gametes. Upon fusion of nuclei and chloroplasts of $mt^+$ and $mt^-$ cells, the zygotes become zygospores. It is notable that the young zygote shows uniparental inheritance of chloroplast DNA from the $mt^+$ parent and mitochondrial DNA from the $mt^-$ parent. Under the favorable conditions, the zygospores divide meiotically and germinate and then new haploid progenies, vegetative cells, are released.

Sequence comparisons of 28S ribosomal DNA and mitochondrial cytochrome c oxidase subunit I of Metagonimus yokogawai, M. takahashii and M. miyatai

  • Lee, Soo-Ung;Huh, Sun;Sohn, Woon-Mok;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.3
    • /
    • pp.129-135
    • /
    • 2004
  • We compared the DNA sequences of the genus Metagonimus: M. yokogawai, M. takahashii, and M. miyatai. We obtained 288 D1 ribosomal DNA (rDNA) and mitochondrial cytochrome c oxidase subunit I (mtCOI) fragments from the adult worms by PCR, that were cloned and sequenced. Phylogenetic relationships inferred from the nucleotide sequences of the 28S D1 rDNA and mtCOI gene. M. takahashii and M. yokogawai are placed in the same clade supported by DNA sequence and phylogenie tree analysis in 28S D1 rDNA and mtCOI gene region. The above findings tell us that M. takahashii is closer to M. yokogawai than to M. miyatai genetically. This phylogenetic data also support the nomination of M. miyatai as a separate species.

Identification of Meat Species Using Species-Specific PCR-RFLP Fingerprint of Mitochondrial 12S rRNA Gene (미토콘드리아 12S rRNA 유전자의 종 특이적 PCR-RFLP Fingerprint를 이용한 식육 원료의 판별)

  • Park, Jong-Keun;Shin, Ki-Hyun;Shin, Sung-Chul;Chung, Ku-Young;Chung, Eui-Ryong
    • Food Science of Animal Resources
    • /
    • v.27 no.2
    • /
    • pp.209-215
    • /
    • 2007
  • In order to develop a sensitive and reliable method for the species-specific molecular markers, PCR-RFLP assay of the mitochondrial DNA(mt DNA) 12S rRNA gene was exploited for the identification of the origin of animal meat species including cattle, pig, sheep, goat, horse, deer, chicken, duck and turkey. A specific primer pairs were designed, based on the nucleotide sequences of mt 12S rRNA gene, for the amplification of the highly conserved region in the gene of the animal species using PCR-RFLP technique. mt DNA was isolated from meat samples followed by DNA amplification using PCR with the specific primers. PCR amplification produced an approximately 455 bp fragment in each of these animal meats. To distinguish pleat species, the PCR amplicons were digested with restriction endonucleases Tsp5091 and MboI, respectively, which generates distinct RFLP profiles. The DNA profiles digested with Tsp5091 allowed the clear discrimination in the mammalian meat species and the DNA profiles digested with MboI in poultry meat species. Therefore, the PCR-RFLP profiles of mt 12S rRNA gene could be very useful to identify the origin of the raw materials in the raw meats as well as the processed meat products.

Phylogenetic Analysis of Korean Black Cattle Based on the Mitochondrial Cytochrome b Gene (mtDNA cytochrome b에 기초한 한국흑우의 계통유전학적 분석)

  • Kim, Jae-Hwan;Byun, Mi Jung;Kim, Myung-Jick;Suh, Sang Won;Kim, Young-Sin;Ko, Yeoung-Gyu;Kim, Sung Woo;Jung, Kyoung-Sub;Kim, Dong-Hun;Choi, Seong-Bok
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • The purpose of this study was to identify genetic polymorphisms of the mitochondrial cytochrome b (mtDNA cyt b) gene in Korean black (KB) cattle breed and to analyze the genetic relationship between the KB and other breeds. We determined the complete sequence of the mtDNA cyt b gene in 38 KB cattle. We also analyzed their genetic diversity, and phylogenetic analysis was performed by comparison with Korean cattle (KC, called Hanwoo) and breeds from China and Japan. A nucleotide substitution was detected in the KB cattle, and two haplotypes were defined. In the neighbor-joining (NJ) tree, the haplotypes of KB were located in Bos taurus lineage with those of KC, Japanese black (JB), Yanbian and Zaosheng breeds. However, the haplotypes of Chinese breeds, excluding Yanbian and Zaosheng, were separated into B. taurus and B. indicus lineages. In the NJ tree of breeds based on Dxy genetic distances, Chinese breeds mixed with B. taurus and B. indicus lineages were located between B. indicus and B. taurus lineages. KB was contained within B. taurus lineage and was determined to be genetically more closely related to two Chinese (Yanbian and Zaosheng) breeds than to KC and JB. The haplotype distribution and the results of the phylogenetic analysis suggest that KB and KC have genetic differences in their mtDNA cyt b gene sequences.

Construction of Pretense-defective Mutant of Bacillus subtilis by Homologous DNA Recombination (상동성 유전자재조합을 이용한 단백질분해효소 비생산 바실러스균주의 구축)

  • Lee, Jin-Tae;An, Bong-Jeun
    • Food Science and Preservation
    • /
    • v.7 no.4
    • /
    • pp.414-417
    • /
    • 2000
  • Competent cell transformation of B. subtilis AC819 was carried out using phenotypic protease-defective(Npr-) DNA of B. subtilis MT-2. An obtained transformant, designated B. subtilis HL-1, was obtained by homologous DNA recombination. Phenotypes of B. subtilis HL-1 were characterized histidine requirement streptomycin-resistance, tetracyclin resistance and non-producing protease. Protoplast transformation frequency of B. subtilis HL-1 by plasmid pUB110 was higher than that of B. subtilis MT-2. From this result, B. subtilis HL-1 is useful for protease gene transformation and thermostable protease gene cloning as a host.

  • PDF

Morphological Description, DNA Barcoding, and Taxonomic Review of Five Nudibranch Species (Gastropoda) from South Korea

  • Jina Park;Damin Lee;Eggy Triana Putri;Haelim Kil;Joong-Ki Park
    • Animal Systematics, Evolution and Diversity
    • /
    • v.39 no.3
    • /
    • pp.99-113
    • /
    • 2023
  • The nudibranch is one of the most colorful gastropod species found in oceans worldwide. Unlike many other gastropod groups, the nudibranch loses an external shell in the adult stage, but instead develops various chemical defense systems. More than 2,500 nudibranch species have been reported worldwide, and 73 species are currently recorded in Korean waters. In this study, we present morphological descriptions, DNA barcode information of mtDNA cox1 sequence, and taxonomic review for five nudibranch species: Apata pricei (MacFarland, 1966), Doto rosacea Baba, 1949, Janolus toyamensis Baba and Abe, 1970, Polycera abei (Baba, 1960), and Trinchesia sibogae (Bergh, 1905). Of these, we also provide in-depth discussion of taxonomic issue of A. pricei that was previously subdivided into two subspecies, A. pricei pricei and A. pricei komandorica. Our morphological examination and molecular analyses of the mtDNA cox1 sequences indicate that these two subspecies are not taxonomically warranted. The phylogenetic information for the other nudibranch species from mtDNA cox1 sequence analysis is also included, providing a molecular basis for species identification and inferring their local phylogenies within each of the species groups discussed herein.