• Title/Summary/Keyword: Korean historical earthquakes

Search Result 47, Processing Time 0.021 seconds

Research on Hyperparameter of RNN for Seismic Response Prediction of a Structure With Vibration Control System (진동 제어 장치를 포함한 구조물의 지진 응답 예측을 위한 순환신경망의 하이퍼파라미터 연구)

  • Kim, Hyun-Su;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.

Performance Evaluation of Vibration Control of High-rise Buildings Connected by Sky-Bridge (스카이브릿지로 연결된 고층건물의 진동제어 성능평가)

  • Kim, Hyun-Su;Yang, Ah-Ram;Lee, Dong-Guen;Ahn, Sang-Kyung;Oh, Jung-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.91-100
    • /
    • 2008
  • In this study, the vibration control performance of high-rise building structures connected by a sky-bridge has been investigated. The philosophy of vibration control using sky-bridges is to allow structures with different dynamic characteristics to exert control forces upon one another through sky-bridges to reduce the overall responses of the system. The the high-rise building structure connected by sky-bridge with 49 and 42 stories was used in this study to investigate the displacement, acceleration, reaction of bearings and stress of sky-bridge by analytical methods. To this end, historical earthquakes, an artificial earthquake and wind force time histories obtained from wind tunnel tests were used. Based on the analytial results, the use of sky-bridge can be effective in reducing the structural responses of high-rise buildings against wind and seismic loads.

  • PDF

Conservation Status, Construction Type and Stability Considerations for Fortress Wall in Hongjuupseong (Town Wall) of Hongseong, Korea (홍성 홍주읍성 성벽의 보존상태 및 축성유형과 안정성 고찰)

  • Park, Junhyoung;Lee, Chanhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.3
    • /
    • pp.4-31
    • /
    • 2018
  • It is difficult to ascertain exactly when the Hongjuupseong (Town Wall) was first constructed, due to it had undergone several times of repair and maintenance works since it was piled up newly in 1415, when the first year of the reign of King Munjong (the 5th King of the Joseon Dynasty). Parts of its walls were demolished during the Japanese occupation, leaving the wall as it is today. Hongseong region is also susceptible to historical earthquakes for geological reasons. There have been records of earthquakes, such as the ones in 1978 and 1979 having magnitudes of 5.0 and 4.0, respectively, which left part of the walls collapsed. Again, in 2010, heavy rainfall destroyed another part of the wall. The fortress walls of the Hongjuupseong comprise various rocks, types of facing, building methods, and filling materials, according to sections. Moreover, the remaining wall parts were reused in repair works, and characteristics of each period are reflected vertically in the wall. Therefore, based on the vertical distribution of the walls, the Hongjuupseong was divided into type I, type II, and type III, according to building types. The walls consist mainly of coarse-grained granites, but, clearly different types of rocks were used for varying types of walls. The bottom of the wall shows a mixed variety of rocks and natural and split stones, whereas the center is made up mostly of coarse-grained granites. For repairs, pink feldspar granites was used, but it was different from the rock variety utilized for Suguji and Joyangmun Gate. Deterioration types to the wall can be categorized into bulging, protrusion of stones, missing stones at the basement, separation of framework, fissure and fragmentation, basement instability, and structural deformation. Manually and light-wave measurements were used to check the amount and direction of behavior of the fortress walls. A manual measurement revealed the sections that were undergoing structural deformation. Compared with the result of the light-wave measurement, the two monitoring methods proved correlational. As a result, the two measuring methods can be used complementarily for the long-term conservation and management of the wall. Additionally, the measurement system must be maintained, managed, and improved for the stability of the Hongjuupseong. The measurement of Nammunji indicated continuing changes in behavior due to collapse and rainfall. It can be greatly presumed that accumulated changes over the long period reached the threshold due to concentrated rainfall and subsequent behavioral irregularities, leading to the walls' collapse. Based on the findings, suggestions of the six grades of management from 0 to 5 have been made, to manage the Hongjuupseong more effectively. The applied suggested grade system of 501.9 m (61.10%) was assessed to grade 1, 29.5 m (3.77%) to grade 2, 10.4 m (1.33%) to grade 3, 241.2 m (30.80%) and grade 4. The sections with grade 4 concentrated around the west of Honghwamun Gate and the east of the battlement, which must be monitored regularly in preparation for a potential emergency. The six-staged management grade system is cyclical, where after performing repair and maintenance works through a comprehensive stability review, the section returned to grade 0. It is necessary to monitor thoroughly and evaluate grades on a regular basis.

Regional Estimation of Site-specific Seismic Responses at Gyeongju by Building GIS-based Geotechnical Information System (GIS 기반의 지반 정보 시스템 구축을 통한 경주 지역 부지고유 지진 응답의 지역적 평가)

  • Sun, Chang-Guk;Chung, Choon-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.38-50
    • /
    • 2008
  • The site-specific seismic responses and corresponding seismic hazards are influenced mainly by the subsurface geologic and geotechnical dynamic characteristics. To estimate reliably the seismic responses in this study, a geotechnical information system (GTIS) within GIS framework was developed by introducing new concepts, which consist of the extended area containing the study area and the additional site visit for acquiring surface geo-knowledge data. The GIS-based GTIS was built for Gyeongju area, which has records of abundant historical seismic hazards reflecting the high potential of future earthquakes. At the study area, Gyeongju, intensive site investigations and pre-existing geotechnical data collections were performed and the site visits were additionally carried out for assessing geotechnical characteristics and shear wave velocity ($V_S$) representing dynamic property. Within the GTIS for Gyeongju area, the spatially distributed geotechnical layers and $V_S$ in the entire study area were reliably predicted from the site investigation data using the geostatistical kriging method. Based on the spatial geotechnical layers and $V_S$ predicted within the GTIS, a seismic zoning map on site period ($T_G$) from which the site-specific seismic responses according to the site effects can be estimated was created across the study area of Gyeongju. The spatial $T_G$ map at Gyeongju indicated seismic vulnerability of two- to five-storied buildings. In this study, the seismic zonation based on $T_G$ within the GIS-based GTIS was presented as regional efficient strategy for seismic hazard prediction and mitigation.

  • PDF

Volcanological Interpretation of Historic Record of AD 79 Vesuvius eruption (베수비오 화산의 79년 분화 기록에 대한 화산학적 해석)

  • Eun Jeong Yang;Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.148-160
    • /
    • 2023
  • The Pliny Letter, the first historical record of volcanic eruptions and disasters on Earth, was studied to better understand the Vesuvius' eruption patterns in 79 AD. The two-day eruption, which began at 1 a.m. on August 24th 79 AD, produced large amounts of volcanic ash and pumice, which were carried by the wind and fell on nearby cities. Furthermore, during the eruption, fast-moving pyroclastic flows flowed down the volcano's sides, and several phenomena such as earthquakes and tsunamis occurred. Cities near Mount Vesuvius were buried and destroyed by volcanic ash and pyroclastic flows. Previous studies were collected, analyzed, and investigated and the scope of damage was chosen from Pompeii, Herculaneum, Stabiae, and Oplontis. The sedimentary stratigraphy and thickness vary according to location and distance from Vesuvius in each region. Within the depositional layers, the remains of residents who died during the eruption were also discovered, and 1,150 remains have been discovered in Pompeii, 306 in Herculaneum, 111 in Stabiae, and 54 in Oplontis, but the exact number of people who killed is unknown. The eruption that exhibited the pattern seen in AD 79 was named the Plinian eruption after Pliny and classified as a new type of eruption as a result of Pliny's detailed description of the eruption.

LPI-based Assessment of Liquefaction Potential on the West Coastal Region of Korea (액상화 가능 지수를 이용한 국내 서해안 지역의 액상화 평가)

  • Seo, Min-Woo;Sun, Chang-Guk;Oh, Myoung-Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.1-13
    • /
    • 2009
  • Liquefaction is a significant threat to structures on loose saturated sandy soil deposits in the event of an earthquake, and can often cause catastrophic damage, economic loss, and loss of life. Nevertheless, the Korean peninsula has for a long time been recognized as a safe region with respect to the hazard of liquefaction, as the peninsula is located in a moderate seismicity region, and there have been no reports of liquefaction, with the exception of references in some historical documents. However, some earthquakes that have recently occurred in different parts of the world have led to liquefaction in non-plastic silty soils, a soil type that can be found in many of the western coastal areas of Korea. In this study, we first present procedures for evaluating the liquefaction potential, and calculate the liquefaction potential index (LPI) distribution at two western coastal sites using both piezocone penetration test (CPTu) data and standard penetration test (SPT) data. The LPI is computed by integrating liquefaction potential over a depth of 20m, and provides an estimate of liquefaction-related surface damage. In addition, we compared the LPI values obtained from CPTu and SPT, respectively. Our research found that the CRR values from CPTu were lower than those from the SPT, particularly in the range between 40 and 120 for the corrected tip resistance, (qc1N)CS, from the CPTu, or in the range of CRR less than 0.23, resulting in relatively high LPI values. Moreover, it was observed that the differences in the CRR between the two methods were relatively higher for soils with high fine contents.

Characterization of Fault Kinematics based on Paleoseismic Data in the Malbang area in the Central Part of the Ulsan Fault Zone (고지진학적 자료를 이용한 울산단층대 중부 말방지역에서의 단층운동 특성 해석)

  • Park, Kiwoong;Prasanajit, Naik Sambit;Gwon, Ohsang;Shin, Hyeon-Cho;Kim, Young-Seog
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.151-164
    • /
    • 2022
  • According to the records of historical and instrumental earthquakes, the southeastern part of the Korean Peninsula is considered the highest seismic activity area. Owing to recent reports of numerous Quaternary faults along the Yangsan and Ulsan fault zones, paleoseismological studies are being actively conducted in these areas. The study area is located in the central part of the Ulsan fault zone, where the largest number of active faults have been reported. Based on lineament and geomorphic analysis using LiDAR images and aerial photographs, fault-related landforms showing topographic relief were observed and a trench survey was conducted. The trench length 20 m, width 5 m, depth 5 m is located approximately 300 m away to the northeast from the previously reported Malbang fault. From the trench section, we interpreted the geometric and kinematic characteristics of the fault based on the deformed features of the Quaternary sedimentary layers. The attitude of the reverse fault, N26°W/33°NE, is similar to those of the reported faults distributed along the Ulsan fault zone. Although a single apparent displacement of approximately 40 cm has been observed, the true displacement could not be calculated due to the absence of the slickenline on the fault plane. Based on the geochronological results of the cryogenic structure proposed in a previous study, the most recent faulting event has been estimated as being earlier than the late Wurm glaciation. We interpreted the thrust fault system of the study area as an imbrication structure based on the previous studies and the fault geometry obtained in this additional trench. Although several previous investigations including many trench surveys have been conducted, they found limited success in obtaining the information on fault parameters, which could be due to complex characteristics of the reverse fault system. Additional paleoseismic studies will contribute to solving the mentioned problems and the comprehensive fault evolution.