• Title/Summary/Keyword: Korean corn grain

Search Result 175, Processing Time 0.028 seconds

Effects of the Addition of \beta-Glucanase to Barley-based Layer Diet (산란계 사료에 \beta-Glucanase 첨가가 보리의 이용성에 미치는 효과)

  • 이정호;이규호;이영철;오상집
    • Korean Journal of Poultry Science
    • /
    • v.21 no.3
    • /
    • pp.195-205
    • /
    • 1994
  • Effects of the addition of \beta-glucanase to barley-based layer diets were examined by feeding 200 Leghorn layers with corn-based (Control) and \beta-glucanase supplemented diets (Barley+ Enzyme). The results obtained are sumrrarized as follows. 1. There were no siginificant (P>0.05) differences in hen-day egg production(%) and average egg weight between two treatments, indicating that the \beta-glucanase supplemented barley could successfully replace the commonly used corn in the layer diets. 2. Although there was no statistical difference (P>0.05) between two treatments, the daily feed consumption was numerically high in layers fed the barly diet compared to the corn-based diet. 3. Availabilities of crude fat and crude fiber of the barley diet were significantly poor (P<0.05) as compared to corn diet. 4. The \beta-glucarase supplementation depressed the viscosity of barley diets and excreta from therm. 5. Both serum and egg yolk cholesterol were not significantly affected by the addition of \beta-glucarase in the barley based diet. Our data indicate that the barley grain supplemented with \beta-glucarase can be sucessfully used as an energy source of layer diet when there is a price advantage. Although some possibilities to produce low cholesterol egg were recognized in this study, further studies pertaining to long-term feeding experiment and elucidaton of the metabolic interrelationship between serum and yolk cholesterol, are required to confirm the result.

  • PDF

Biofuel Industry and Recent Research in USA (미국의 바이오연료와 연구 동향)

  • Lee, Joung-Kyong;Bransby, David
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • Demand for alternatives to petroleum is increasing the production of biofuels from food crops such as corn, soybeans, sorghum and sugarcane, etc. At least for the next 5 years, ethanol demand will be increased greatly in the United States and in the world. Presently, most ethanol produced in the United States is corn (Zea mays) ethanol. As a result, especially in the Americas and Southeast Asia, agricultural land is diverted to biofuel production. Even though biofuel industry has many advantage including national security, economical, energetical and sustainable impacts, it is driving grain prices up and creating considerable concern about the potential negative impacts on a wide range of food products that depend on gain : chicken, pork, beef, and dairy products such as milk, cheese, yoghurt, cream and ice cream. Feedstock crops are crops such as switchgrass(Panicum virgatum, L.), corn stover and grasses that can be used in industrial processes such as fermentation into alcohol fuels. Feedstock is no compete with food. Furthermore it is friendly environmental bioenergy crops. In Korea, with increasing demand for fossil fuels the exploration of alternative sources of liquid fuel is inevitable. I suggest Korea need to research and to develop actively on feedstock for biofuel production through this review.

Nutritional Evaluation of Imported Organic Feeds and Locally Produced Agricultural By-products for Organic Ruminant Farming (유기 반추동물 전용 수입산 유기사료 및 국내산 유기 부산물의 사료적 가치 평가)

  • Park, Joong-Kook;Kim, Chang-Hyun
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.4
    • /
    • pp.513-528
    • /
    • 2011
  • This study was conducted to evaluate the nutritional value of locally produced organic agricultural by-products to substitute imported organic feeds for organic ruminant farming. Imported organic feeds (corn grain, soybean meal, soybean seed, oat grain, barley grain, wheat grain, buckwheat, sunflower seed meal) and byproducts (rice bran, grape seed meal, rice straw, soybean hull, soybean curd, rice hull, green kernel rice, and crushed rice grain) were analyzed for chemical composition and NDF, ADF, mineral, and amino acid contents and anti-nutritional factors. Dry matter, NDF and ADF contents in organic feeds were higher than those in conventional feeds. Especially, the 9.65% fat content of organic soybean meal was 6 times higher than the 1.95% fat content of conventional soybean meal. Fat contents of rice bran, grape seed meal, green kernel rice, and crushed rice grain were 25.66, 6.09, 3.57 and 1.59%, respectively. Protein contents of soybean hull and soybean curd were 14.68 and 19.87%, respectively, which are highest among organic by-products. Levels of aflatoxin in all feeds were below the safety level. Therefore, organic rice bran, green kernel rice and crushed rice as energy source, and soybean hull and soybean curd as protein source could partial replace imported feeds for organic ruminant farming.

Comparison of the Forage Quality and Productivity According to Varieties and Plant Parts of Imported Silage Corn (Zea mays, L) (도입 사일리지용 옥수수의 품종과 식물체 부위에 대한 사료가치와 생산성 비교)

  • Kim, Jong Geun;Li, Yan Feng;Wei, Sheng Nan;Jeong, Eun Chan;Kim, Hak Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.2
    • /
    • pp.98-105
    • /
    • 2020
  • This experiment was conducted to a comparison of the productivity according to variety and forage quality by plant parts of imported silage corn (Zea mays, L) in Pyeongchang. The corns evaluated in this experiment were 8 varieties (P1184, P1151, P1194, P1543, P1345, P1429, P1443, and P2105) introduced from the United States, Pioneer Hybrid Co. The harvested corn was divided into 5 plant parts (leaf, stem, cob, husk, and grain), and the ratio of each part was calculated using dry weight and the feed value was analyzed. The emergence rate of corn was generally good except for the P1151 and P2105 varieties. The average tasseling date was July 24th and the silking date was July 27th, but the P2105 variety was late to July 28th and August 1st, and the remaining varieties were similar. P1345 was the highest (289 and 123 cm), and P1151 varieties were the lowest (267 and 101 cm) in the plant and ear height. Disease resistance was low in P1184, P1443 and P1429, and P1197 and P1345 were high. In the case of stover, the dry matter (DM) content was the lowest at 19.6% in the P1151 and the highest at 24.9% in the P1429. DM content of ear was the highest in the P2105 (55.5%), and P1184 (54.2%) and P1345 (54.3%) were also significantly higher (p<0.05). The DM yield of stover of P2105, P1429 and P1194 varieties was significantly higher (p<0.05), and ear yield of P2105, P1345 and P1443 was higher. The proportions of each part of plants (leaf, stem, cob, husk, and grain) divided by 5 was high, with 50-60% of the ear(grain+cob) ratio. The ratio of husk and cob was roughly similar, and the leaf and stem part showed a ratio of about 20%. The crude protein (CP) content was highest in leaf, followed by grain. The CP content of the stem was the lowest, and the husk was not significantly different among the varieties (p>0.05). The acid detergent fiber (ADF) content was similar to the rest parts except grain, but the leaf part tended to be lower, and other parts except the stem and leaf showed no significant difference between varieties (p>0.05). There was no significant difference in NDF (neutral detergent fiber) content in husk, but there was a difference between varieties in other parts (p<0.05). In addition, there was a special difference by plant parts for each variety, P2015 on the stem, P1197 on the leaf, P1151 on the cob, P1197 on the husk, and P1197 on the grains with high NDF content. IVDMD (in vitro dry matter digestibility) was not significantly different between stems and grains, but there was a difference between varieties in cobs and husks. According to the results, DM yield of P2105 variety was the best in the experiment, and the ratio of grain was excellent in P1543 and P1345. In addition, it was found that the feed value was higher in the leaves and grains, and the leaf and stem had higher feed values than husk or cob.

Feed Value of Pearl Millet [Pennisetum americanum(L.) Leeke] Grown as a New Forage Crop (진주조의 사료적 가치)

  • Park, Keun-Yong;Choi, Byung-Han;Kang, Young-Kil;Moon, Hyeon-Gui;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 1988
  • Pearl millet has been detected as a promising new forage crop of excellent quality and productivity since 1985. Its green fodder yields were 10.7 to 12.8 tons per hectare in average of 26 accessions in Suwon, 1985. The yield level was much higher than those of Italian and pro so millets and com. Com was better than Italian and proso millets, and proso millet was better than Italian millet for a green fodder crop. Suwon 1 pearl millet hybrid was the best of the 13 hybrids examined in Suwon, 1986 being 149 tons per hectare of three times cut green fodder yields. The pearl millet hybrid was higher in green fodder yield than com and sorghum/sudan grass hybrids. Leaf area index was 32.4 for the three times cut pearl millet, while 5.8 for the one time cut corn, and 20.8 for the three times cut sorghum/sudan grass. Crude protein content was 16.3 percent for pearl millet being six to five percent higher than corn and sorghum/sudan grass, 11.8 percent for the one time cut at maturity and 16.1 percent for four times cut being higher than corn and sorghum/sudan grass. Crude fat content was 3. percent for pear 1 millet grain being some what higher than corn and sorghum/sudan grass and 1.3-1.4 percent for green fodder crop. Crude fiber content in grain was 1.9 percent for pearl millet 2.6 percent for corn, and 4.3 percent for sorghum/sudan grass. Crude fiber content in pearl millet plant was 24.4 to 26.8 percent, Crude ash content was 2.4 percent in grain and 10.8 to 11.6 percent in the plants of pearl millet hybrid. In vitro digestibility of grain was 93.7 percent for pearl millet, 95.4 percent for corn, and 55.8 percent for sorghum/sudan grass. The digestibility of whole plant was 57.6 to 63.4 percent for pearl millet, 46.3 percent for corn, and 47.3 to 57.6 percent for sorghum/sudan grass. Heavier nitrogen fertilizer applications increased green fodder yields, protein content and digestibility, but reduced fat and ash content of pearl millet inbred line T 186.

  • PDF

Simulation for Irrigation Management of Corn in South Texas

  • Ko, Jong-Han;Piccinni, Giovanni
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.161-170
    • /
    • 2008
  • Interest is growing in applying simulation models for the South Texas conditions, to better assess crop water use and production with different crop management practices. The Environmental Policy Integrated Climate (EPIC) model was used to evaluate its application as a decision support tool for irrigation management of com (Zea mays L.) in South Texas of the U.S. We measured actual crop evapotranspiration (ETc) using a weighing lysimeter, soil moisture using a neutron probe, and grain yield by field sampling. The model was then validated using the measured data. Simulated ETc using the Hargreaves-Samani equation was in agreement with the lysimeter measured ETc. Simulated soil moisture generally matched with the measured soil moisture. The EPIC model simulated the variability in grain yield with different irrigation regimes with $r^2$value of 0.69 and root mean square error of $0.5\;ton\;ha^{-1}$. Simulation results with farm data demonstrate that EPIC can be used as a decision support tool for com under irrigated conditions in South Texas. EPIC appears to be effective in making long term and pre-season decisions for irrigation management of crops, while reference ET and phenologically based crop coefficients can be used for inseason irrigation management.

Association of Whole Grain Consumption with Socio-Demographic and Eating Behavior Factors in a Korean Population: Based on 2007-2008 Korea National Health and Nutrition Examination Survey (한국인의 전곡류 섭취와 인구사회적 요인 및 일부 식행동 특성 간의 연관성: 2007-2008 국민건강영양조사 자료를 이용하여)

  • Lee, Seung-Min
    • Korean Journal of Community Nutrition
    • /
    • v.16 no.3
    • /
    • pp.353-363
    • /
    • 2011
  • The objective of the current study was to examine associations of whole grain consumption with socio-demographic (i.e.: sex, age, household income, education, marriage status) and certain eating behavior factors (i.e.: dish source, eating place, meal type) among a generally healthy Korean population. Using twenty-four hour recall data from the 2007-2008 National Health and Nutrition Examination Surveys, whole grain intake (g/day) was calculated for a total of 8,836 generally healthy Koreans aged 6 years and higher. The study subjects had very low whole grain intake. Specifically approximately 60% of the subjects reported no whole grain consumption on the survey day, and mean daily intake ranged from 8.0 g to 15.1 g in different gender and age groups. Living with a spouse was found to be a positive environment factor for whole grain consumption, especially among men. As household income levels increased, whole grain consumption status also improved. The proportion of non-consumer was lowest in a 6-19 year group, and mean intake amount was highest in middle-aged adults. Major dish sources for whole grain consumption included boiled rice with mixed grains, corn, boiled rice with brown rice, cereal products, and other types of boiled rice. It was found that whole grain consumption was highly affected by eating places rather than meal types. The best contributing eating place was home in each age and gender group. The study findings may be useful in planning nutrition education strategy and formulating dietary behavior guidelines for whole grain consumption improvement.

Occurrence of Toxigenic Fusarium vorosii among Small Grain Cereals in Korea

  • Lee, Theresa;Paek, Ji-Seon;Lee, Kyung Ah;Lee, Soohyung;Choi, Jung-Hye;Ham, Hyeonheui;Hong, Sung Kee;Ryu, Jae-Gee
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.407-413
    • /
    • 2016
  • Fusarium graminearum species complex (FGSC) causes Fusarium head blight in small grain cereals. To date, four species (F. graminearum, F. asiaticum, F. boothii, and F. meridionale ) belonging to FGSC frequently occur in Korean cereals. In addition, we first reported the occurrence of additional species (F. vorosii ) within FGSC, which was isolated from barley, corn, and rice in Korea. Phylogenetic analysis of the Fusarium isolates of this group using combined multigene sequences confirmed species identification. Moreover, the macroconidia produced by these isolates were morphologically similar to those of the F. vorosii holotype. Chemical analysis indicated that the F. vorosii isolates produced various trichothecenes such as nivalenol and deoxynivalenol with their acetyl derivatives along with zearalenone. Pathogenicity tests demonstrated that all of the F. vorosii isolates examined were pathogenic on barley, corn, and rice with variation in aggressiveness. This study is the first report of F. vorosii in Korean cereals, their pathogenicity towards barley and corn, and their ability to produce trichothecenes and zearalenone.

Comparison of Methane Production in Korean Native Cattle (Hanwoo) Fed Different Grain Sources (곡류 사료원별 육성기 한우 장내발효에 의한 메탄가스 배출량 비교)

  • Seol, Yong-Joo;Kim, Kyoung-Hoon;Baek, Youl-Chang;Lee, Sang-Cheol;Ok, Ji-Woun;Lee, Kang-Yeon;Hong, Seong-Koo;Park, Kyu-Hyun;Choi, Chang-Weon;Lee, Sung-Sil;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Methane production during anaerobic fermentation in the rumen represents an energy loss to the host animal and induces emissions of greenhouse gases in the environment. Our study focused on comparison in methane production from growing Korean native steers fed different grain sources. Six Hanwoo steers (BW = $180.6{\pm}3.1$ kg) were fed, on a DM basis (TDN 2.80 kg), 40% timothy and 60% barley concentrate (Barley) or corn concentrate (Corn), respectively, based on the Korean Feeding Standards. Each period lasted 18 days including a 14-day adaptation and a 4-day measuring times. The steers were in the head hood chamber system (one cattle per chamber) during each measuring time to measure heat and methane production per day. Different grain sources did not affect digestibilities of dry matter, crude protein, crude fiber, crude fat, NDF, ADF and nitrogen-free extract. The mean methane concentrations per day were 202.0 and 177.1 ppm for Barley and Corn, respectively. Methane emission averaged 86.8 and 77.7 g/day for Barley and Corn, respectively. Methane emission factor by maintenance energy requirement for the growing steers fed barley based concentrate was higher than the steers fed corn based concentrate (Barley vs. Corn, 31.7 kg $CH_4\;head^{-1}\;yr^{-1}$ vs. 28.4 kg $CH_4\;head^{-1}\;yr^{-1}$). Thus, methane conversion rate was 0.065 (6.5%) and 0.055 (5.5%) for Barley and Corn, respectively.

Sensing Technologies for Grain Crop Yield Monitoring Systems: A Review

  • Chung, Sun-Ok;Choi, Moon-Chan;Lee, Kyu-Ho;Kim, Yong-Joo;Hong, Soon-Jung;Li, Minzan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.408-417
    • /
    • 2016
  • Purpose: Yield monitoring systems are an essential component of precision agriculture. They indicate the spatial variability of crop yield in fields, and have become an important factor in modern harvesters. The objective of this paper was to review research trends related to yield monitoring sensors for grain crops. Methods: The literature was reviewed for research on the major sensing components of grain yield monitoring systems. These major components included grain flow sensors, moisture content sensors, and cutting width sensors. Sensors were classified by sensing principle and type, and their performance was also reviewed. Results: The main targeted harvesting grain crops were rice, wheat, corn, barley, and grain sorghum. Grain flow sensors were classified into mass flow and volume flow methods. Mass flow sensors were mounted primarily at the clean grain elevator head or under the grain tank, and volume flow sensors were mounted at the head or in the middle of the elevator. Mass flow methods used weighing, force impact, and radiometric approaches, some of which resulted in measurement error levels lower than 5% ($R^2=0.99$). Volume flow methods included paddle wheel type and optical type, and in the best cases produced error levels lower than 3%. Grain moisture content sensing was in many cases achieved using capacitive modules. In some cases, errors were lower than 1%. Cutting width was measured by ultrasonic distance sensors mounted at both sides of the header dividers, and the errors were in some cases lower than 5%. Conclusions: The design and fabrication of an integrated yield monitoring system for a target crop would be affected by the selection of a sensing approach, as well as the layout and mounting of the sensors. For accurate estimation of yield, signal processing and correction measures should be also implemented.