• Title/Summary/Keyword: Korean corn

Search Result 2,687, Processing Time 0.037 seconds

Prediction of Chemical Composition in Distillers Dried Grain with Solubles and Corn Using Real-Time Near-Infrared Reflectance Spectroscopy

  • Choi, Sung Won;Park, Chang Hee;Lee, Chang Sug;Kim, Dong Hee;Park, Sung Kwon;Kim, Beob Gyun;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.177-184
    • /
    • 2013
  • This work was conducted to assess the use of Near-infrared reflectance spectroscopy (NIRS) as a technique to analyze nutritional constituents of Distillers dried grain with solubles (DDGS) and corn quickly and accurately, and to apply an NIRS-based indium gallium arsenide array detector, rather than a NIRS-based scanning system, to collect spectra and induce and analyze calibration equations using equipment which is better suited to field application. As a technique to induce calibration equations, Partial Least Squares (PLS) was used, and for better accuracy, various mathematical transformations were applied. A multivariate outlier detection method was applied to induce calibration equations, and, as a result, the way of structuring a calibration set significantly affected prediction accuracy. The prediction of nutritional constituents of distillers dried grains with solubles resulted in the following: moisture ($R^2$=0.80), crude protein ($R^2$=0.71), crude fat ($R^2$=0.80), crude fiber ($R^2$=0.32), and crude ash ($R^2$=0.72). All constituents except crude fiber showed good results. The prediction of nutritional constituents of corn resulted in the following: moisture ($R^2$=0.79), crude protein ($R^2$=0.61), crude fat ($R^2$=0.79), crude fiber ($R^2$=0.63), and crude ash ($R^2$=0.75). Therefore, all constituents except for crude fat and crude fiber were predicted for their chemical composition of DDGS and corn through Near-infrared reflectance spectroscopy.

Physicochemical Properties of Freeze-dried Corn Starch Sponge Matrix (동결 건조된 옥수수 전분 스펀지 매트릭스의 이화학적 특성)

  • Han, Kyung-Hoon;Kim, Doh-Hee;Song, Kwan-Yong;Lee, Kye-Heui;Yoon, Taek-Joon;Yang, Sung-Bum;Lee, Seog-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.419-427
    • /
    • 2010
  • The focus of the current study was to investigate the physicochemical properties of a corn starch-sponge matrix prepared at a low concentration below gel forming by freeze-drying. The effect of variables(starch concentration, heating temperature, and heating hold time) on the physicochemical properties of the samples was analyzed by response-surface methodology. Regression models on the properties of samples such as hardness, springiness, and water solubility index(WSI) showed high correlation coefficients(r>0.95) and significant F values, but regression models for the other properties(swelling power, apparent viscosity, reducing sugar content, and digestibility) showed them to have relatively low significance. Sample hardness of sample showed the highest value at condition of $90^{\circ}C$ and 5%, whereas springiness was at a maximum at $130^{\circ}C$ and 5%. Also, at 1% of starch concentration, mechanical properties were greatly decreased as the relative humidity increased, compared with the 3% and 5%, especially in the hardness of samples. The WSI showed an increasing trend with heating temperature regardless of starch concentration. Overall, the physicochemical properties of freeze-dried corn starch-sponge matrix were influenced much more by starch concentration and heating temperature than by heating hold time. The results of this study show that the basic properties of freeze-dried corn starch-sponge matrix can be used for the specific food applications or as a functional material for its stability.

The Molecular Weight Distribution Pattern in Oxidized Corn Starch (산화에 따른 옥수수 전분의 분자량 분포 양상)

  • 한진숙;안승요
    • Korean journal of food and cookery science
    • /
    • v.18 no.2
    • /
    • pp.200-205
    • /
    • 2002
  • Corn starch was modified by the oxidation with sodium hypochlorite(NaOCl) and the changes in the distribution of molecular weight were examined. Corn starch was oxidized with 0.25, 0.5, 0.75, 1.0, and 1.5% active Cl/g of starch at pH 7.0 and 25$^{\circ}C$ for 10 min. Oxidation of corn starch caused a change in the molecular weight distribution of amylopectin. The fraction of highest molecular weight in native starch decreased gradually and the fraction of lower molecular weight increased with increasing oxidation. Also, λ$\sub$max/ and iodine binding capacities of oxidized starches decreased and the soluble carbohydrate content increased by oxidation. The differential scanning calorimetric results of oxidized starches showed that the temperature and enthalpies of gelatinization were not changed by oxidation; however, the more the starch was oxidized, the greater the extent of retrogradation.

Effects of Added Corn Starches on Sensory Characteristics of Acorn Mooks(Starch Gels) (옥수수 전분을 혼합한 도토리묵의 관능적 특성)

  • Park, Sang-Ok;Kim, Kwang-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.613-617
    • /
    • 1988
  • This study was undertaken to observe the effects of partial replacement of acorn starch with dent, cross-linked, or acid modified corn starches, and of refrigeration on sensory characteristics of acorn mooks(starch gels). Triangle test was used to determine if there were noticeable differences among the monks. In order to find the source of differences, various sensory properties of the monks were evaluated with quantitative descriptive analysis on unstructured scale. The results indicated that added corn starches affected significantly most of the sensory characteristics evaluated. Control acorn monks had greater intensities in color, clarity, bend property, firmness and cohesiveness. Monks containing cross-liked corn starch were more similar to control than the other mixed starch monks, fresh or refrigerated.

  • PDF

Effect of Polyphenols Treatment from Pine Needle on the Inhibition of Aflatoxin Production in Rice and Corn (쌀, 옥수수에 대한 솔잎 Polyphenols 처리가 Aflatoxin 생성 저해에 미치는 영향)

  • 김형열;윤원호;구본순
    • Food Science and Preservation
    • /
    • v.9 no.1
    • /
    • pp.78-84
    • /
    • 2002
  • While rice and corn were stored at room temperature for 90 days the degree of aflatoxin production was measured without humidity and temperature control. The amount of aflatoxin production of rice and corn after 30 days was 01.1 and 0.3 ppb, respectively. The degree of aflatoxin production increased rapidly with increasing storage temperature and humidity. The optimum conditions of aflatoxin production were 25 ∼30$\^{C}$ and 80% humidity. The degree of aflatoxin production in corn was higher than in rice under the same conditions. Rice and corn were treated with 0∼0.05%(w/w) of methyl alcohol (MeOH) extract and polyphenol (PP) group materials individually respectively under the optimum conditions. As the result, the inhibition effect of aflatoxin production increased with increasing the amount of treatment. It appeared as follows: catechin (CT)

Development of Modified Starch by Gamma Irradiation (감마선을 이용한 변성전분의 개발)

  • Kang, Il-Jun;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.514-520
    • /
    • 1996
  • The purpose of this study was to develop the production technology of modified starch. Corn starches were gamma irradiated at 0-110 kGy and the effect of irradiation dose levels on the physicochemical properties of corn starches were investigated. Blue value linearly decreased, while alkali number and solubility markedly increased as irradiation dose levels were increased. The optical transmittance increased as applied irradiation dose levels were increased in the temperature range of $65-95^{\circ}C.$ Water binding capacity and swelling power showed maximum value at 30 and 10 kGy, respectively and they tended to decrease thereafter. Gelatinization viscosity of the gamma irradiated starch considerably decreased as compared to that of the non-irradiated starch. Irradiation at 110kGy resulted in a marked reduction of peak viscosity and cooling viscosity at $30^{\circ}C$ by 100 and 300 times, respectively. The physicochemical properties of corn starch irradiated at 30 kGy were similar to those of commercial acid-modified starch, while those of corn starch irradiated at 100 kGy were similar to those if oxidized starch.

  • PDF

Studies for Processing Condition Optimization and Physicochemical Property of Resistant Starch (난소화성 전분 제조공정의 최적화 및 이화학적 특성 연구)

  • 한명륜;김우경;강남이;이수정;김명환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1193-1199
    • /
    • 2003
  • As a result of resistant starch yield depending on heating temperature, moisture content, storage temperature and heating-cooling cycle with RSM (response surface methodology), high amylose corn starch (46%) was appeared higher than normal corn starch in the yield (22%). At the high amylose corn starch, optimum conditions for resistant starch formation were 6 times of heating-cooling cycle, 108$^{\circ}C$ heating temperature and 67% moisture content at the 2$0^{\circ}C$ storage temperature, which resulted in 25% yield with these experiment conditions. Affecting factor for the resistant starch formation was arranged according to heating -cooling cycle, moisture content, heating temperature and storage temperature. Raw corn starch granule was destructive and appeared a porous reticular structure by the resistant starch formation. Color became dark and increased yellowness by caramelization during heating processing. Heating-cooling processing was the result of decreased hardness, cohesiveness, springiness and gumminess.

Assessment on Damage Risk of Corn for High Temperature at Reproductive Stage in Summer Season Based on Climate Scenario RCP 8.5 and 4.5

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In order to assess risk of high temperature damages about corn during reproduction stages in the future, we carried out analysis of climate change scenarios RCP (Representative Concentration Pathway) 4.5 and RCP8.5 distributed by KMA (Korea Meteorological Administration) in 2012. We established two indexes such as average of annual risk days of high temperature damage which express frequency and strengthen index of high temperature damage. As results of producing maps for 157 cities and counties about average of annual risk days of high temperature damage during total periods of scenarios, the risk of high temperature in RCP8.5 was evaluated to increase at all over nation except inland area of Gangwon province, while RCP4.5 showed similar to present, or little higher. The maps of annual risk days of high temperature damage with 10 years interval in RCP8.5 prospected that the risk for damaging corn growth would increase rapidly from 2030's. The largest risk of high temperature damage in the future of RCP8.5 was analyzed at Changnyeong county located east-south inland area in Kyeongnam province, while the smallest of risk counties were Pyeongchang, Taebaek, Inje, and Jeongseon. The prospect at 12 counties which is large to produce corn at present and contains large plains have been showed that there will be only a little increase of risk of high temperature at Goesan, Yangpyeong, Hongcheon, Seosan, and Mooju until 2060's. But considering strengthen index of high temperature damage, most regions analyzed would be prospected to increase rapidly after 2030's. To cope with high temperature damage of corn in the future, we should develop various practical technologies including breeding adapted varieties and controlling cultivation periods.

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF

Physicochemical Properties of the Durian Seed Starch (Durian 종자 전분의 이화학적 특성)

  • Lee, Seong-Gap;Kim, Hyeong-Su;Son, Jong-Youn
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1410-1414
    • /
    • 1999
  • The granular size and shape of durian seed starch were $2.0-10.0\;{\mu}m$ and oval and polygonal. Amylose contents of durian seed, corn, sweet potato and potato starch were 28.3%, 27.5%, 20.3% and 21.7%, respectively. Blue value of durian seed (0.370) higher than that of corn (0.368), sweet potato (0.332), and potato starch (0.338). Alkali numbers of durian seed, corn, sweet potato and potato starch were 7.39, 9.02, 7.08 and 5.43, respectively. Swelling power of durian seed starch was similar to that of sweet potato starch. X-ray diffraction patterns of durian seed starch showed an A-type crystalline structure. According to pasting properties by Rapid Visco-Analyzer, the gelatinization temperature of durian seed starch $(76.6^{circ}C)$ was higher than that of corn $(73.0^{circ}C)$, sweet potato $(72.3^{circ}C)$ and potato starch $(70.2^{circ}C)$. The breakdown of durian seed starch were lower than that of corn, sweet potato and potato starch.

  • PDF