• Title/Summary/Keyword: Korean charcoal

Search Result 668, Processing Time 0.026 seconds

A Study on Moisture Adsorption Capacity by Charcoals (숯의 수분 흡착성능 연구)

  • Kim, Dae Wan;An, Ki Sun;Kwak, Lee Ku;Kim, Hong Gun;Ryu, Seung Kon;Lee, Young Seak
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.377-385
    • /
    • 2022
  • Surface morphology and adsorption characteristics of charcoals prepared from Korean traditional kiln were analyzed, and their moisture adsorption capacities were examined with respect to humidity and temperature change. Moisture adsorption capacities of red-clay powder, activated carbon fiber fabric (ACF fabric) and activated carbon fiber paper(ACF paper) were also examined to compare with those of charcoals. Moisture adsorption capacity of charcoal was low less than 45% humidity due to its hydrophobic property, but it slowly and linearly increased as increasing the humidity. Moisture adsorption capacity of red-clay powder was similar to charcoal at low level humidity, it increased exponentially as increasing the humidity showing Type V adsorption isotherm. Therefore, the weather forecast annal prepared by employee of weather centre in Joseon Dynasty is experimentally approved. ACF fabric and ACF paper show excellent moisture adsorption capacities, which can be used to humidity measuring sensor. Adsorption isotherm of charcoal slice was peculear showing the mixed Type I and Type IV due to low-pressure hysteresis that was occurred from embedment of nitrogen in crevice of charcoal. The specific surface area of charcoal increased by grinding charcoal slice to powder, resulted in increasing the desorption amount of adsorbent at low relative pressure.

Removal of Harmful Gas with Wood or Bark Charcoal (목질 및 수피탄화물에 의한 기상 유해가스 흡착제거)

  • Jo, Tae-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.69-76
    • /
    • 2008
  • To estimate removal ability of harmful gas by charcoal, we carbonized Red oak (Quercus mongolica Fischer) wood and Larch (Larix leptoepis) bark at $300^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$ for 1 hour. Gas removal ratios was increased with carbonization temperature but there is no difference between wood and bark charcoal. In the case of bad smell and VOC gas, woody charcoal including bark charcoal carbonized at $300^{\circ}C$ showed low removal ratio, less than 50%, whereas woody charcoals which was carbonized at more than $600^{\circ}C$ reached almost 100% removal ratio to bad smell gas such as trimethylamine, methymercaptan, hydrogen sulfide, and to VOC such as benzene, toluene, xylene in $5{\ell}$ tedler bag with each gas of 100 ppm. It was thought that because charcoals carbonized at high temperature, for example, $600^{\circ}C$ or $900^{\circ}C$ have enough specific surface area to adsorb gas of 100 ppm. Moreover these charcoals rapidly removed almost gas in 10 minutes. However, acetylene, $SO_2$ and $NO_2$, charcoals which was carbonized more than $600^{\circ}C$ and which showed high removal ratio had low gas removal ratio of 40% at even 4 hours adsorption. It was concluded that adsorptive ability of woody charcoal was mainly influenced with carbonizing temperature, so that different charcoals carbonized at different temperature brings different gas removal ratio because these charcoals have not only different physical factor such as specific surface area but different chemical characteristic such as functional group, expected.

Evaluation of the Charcoal Tube Sampling Method for Carbon Disulfide in Air (활성탄관법을 이용한 공기중 이황화탄소 농도 측정법에 관한 연구)

  • Lee, Na Roo;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.22-36
    • /
    • 1993
  • This study was conducted to evaluate the charcoal tube sampling method for carbon disulfide in the air. Breakthrough was investigated according to flow rate, sampling time and air volume. Also the storage stability by storage method and time was investigated. The results are summarized as follows. 1. The samples stored at room temperature($28.2^{\circ}C$), refrigerator($3.8^{\circ}C$) and freezer($-15.6^{\circ}C$) were analyzed every week to five weeks. At one week storage at room temperature, 3.5% of $CS_2$ in the front section of the charcoal tube migrated into the back section and 57.7% at five weeks. The amount of $CS_2$ in the back section of the charcoal increased continuously by storage time. Migration of $CS_2$ was slow at refrigerator, and stopped occur at freezer. Recovery rate $CS_2$ was 52-82% at room temperature and 92-101% at refrigerator, based on the amount at freezer as a reference value. Thus loss was observed at room temperature. 2. When 6-48 L of fresh air were passed through tubes with spiked amounts of 0.379 and 0.759mg sample, the amounts of $CS_2$ in the back section of charcoal were 5.7-132.4 and 0-92% of the amount in the front section, respectively. The total recovery rates of$CS_2$ from 0.379 and 0.759mg spiked sample were 35.7-101.0% and 9l.3-100.1%, respectively. $CS_2$ loss was observed in 0.379mg spiked sample, but not in 0.759mg spiked sample. In the spiked samples, the amount of $CS_2$ in the back section of charcoal was not affected by flow rate when the air volume was controlled. The amount of $CS_2$ in the back section of charcoal increased over sampling time. And the faster the flow rate, the more the migration amount when the sampling time was the same. 3. A known concentration, 10 ppm of $CS_2$, was produced in a 200 L Tedlar bag. When the air volume was 24, 36, 48 L, breakthrough was 5.8, 16.9, 47.4%, respectively. The sampling flow rate of 0.05, 0.1, 0.2 Lpm did not change the breakthrough rate. Breakthrough increased over sampling time. And the faster the flow rate, the more the breakthrough, when the sampling time was the same.

  • PDF

Effect of Application of Woody Chared Materials on the Plant Growth and the Chemical Properties of Soil in the Continuous Cropping Field of Red Pepper (고추 연작지(連作地)에 있어서 목질탄화물(木質炭化物) 시용(施用)이 생육(生育) 및 토양(土壤)의 화학성(化學性)에 미치는 효과(效果))

  • Park, Sang-Keun;Kim, Kwang-Yong;Lee, Ji-Weon;Shin, Young-An;Lee, Eung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • This study was conducted to investigate the effect of woody chared materials on the injuries and growth of plant, and chemical properties of soil in the continuous cropping field of red pepper. The field for the experiment was selected among districts, where have been taking place seriously injuries by continuous cropping of red pepper for above 20 years. The growth of red pepper was promoted and the growing period was prolonged about 2 weeks longer than that of control, and yield was increased with the increment of charcoal application amount. The occurrance rate of phytopthora blight disease was 9% lower at charcoal 500 kg/l0a application treatment than at control in the experiment of application amount of the first year, but was not significantly different between sizes of charcoal. The mix of charcoal and pyroligeous liquor had no effect on the growth of red pepper. In applicated soil of charcoal, pH was increased, EC was decreased, and Ca and Mg content was low somewhat. In all, charcoal granule was most effective type. The B/F value of soil was higher at the charcoal powder treatment on July 18 than other treatment, but was no difference between treatments in anytime else.

  • PDF

Utilization of Charcoal as an Environmentally Friendly Building Materials (II) - A Study on the Energy Saving and Sound Insulation Characteristics of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(II) - 목탄 함유 건축자재의 에너지 절감 및 차음 특성에 관한 연구)

  • Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.41-52
    • /
    • 2011
  • This study was carried out to investigate the effect of energy saving and sound insulation of building materials mixed with charcoal. To investigate the functionality of building based on the difference of construction materials, three different experimental buildings were constructed. They were buildings built with the conventional construction materials (A), the charcoal construction materials (B), and the charcoal-sericite construction materials (C). The study showed that energy consumption could be reduced approximately 9.5% and 14.5% by replacing A with B and C, respectively. Especially, it is revealed that the lower outdoor temperature was, the higher energy saving effect was. Also, after shutoff the boiler switch the decrease rate of room temperature of the one using B was lower than those of others using A and C so that the room temperature at the building using B was higher by $3.5{\sim}4.2^{\circ}C$ in the 1 meter air above the ground and by $4.4{\sim}5.4^{\circ}C$ on the floor surface after 12 hours passed. In the building noise test the heavy-and light-weight impact sound of the plate, represented by criterion of noise between floors in multi-story building, tended to decrease in the test sample containing charcoal.

Charcoal Properties and Temperature Change of a Kiln's Inner and Outer Walls in Carbonization Process Using an Improved Kiln (개량형탄화로를 이용한 제탄과정 중 탄화로 내·외벽 온도변화 및 목탄 특성)

  • Kwon, Gu-Joong;Kwon, Sung-Min;Jang, Jae-Hyuk;Hwang, Won-Joung;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.230-237
    • /
    • 2011
  • The study was performed to investigate the characteristics of charcoal and temperature change of a kiln's inner and outer walls in carbonization process using improved kiln. In this kiln system, carbonization process was completed in eight days. In the kiln, the ignition temperature was kept about $720^{\circ}C$. And then the temperature were increased gradually prior to be refined. Finally, the temperature in refining process was reached to maximum point, $1,000^{\circ}C$. In the chimney, the temperature was increased gradually from $90^{\circ}C$ at ignition to $750^{\circ}C$ at refining. The temperature change of the kiln wall resembles a temperature change progress curve during a carbonization process. The highest temperature of the kiln wall that appeared by a carbonization process was around $500^{\circ}C$. As a result of having measured an inner wall and the outer wall of the kiln using an infrared thermography camera, it was judged with there being considerable latent heat on kiln wall and ceiling. Fixed carbon contented of charcoal was 85.9~89.9%. Refining degree of charcoal, hardness, calorific value and pH were l, 12, 7,047~7,456 kcal/kg, 9.0~9.9, respectively. The yield of wood charcoal was 13.8%, and compared to conventional kiln's yield increased 1.5%.

Adsorption of Formaldehyde by Wood Charcoal-Based Building Materials (목탄계 건축자재에 의한 포름알데히드 흡착)

  • Lee, Oh-Kyu;Choi, Joon-Weon;Jo, Tae-Su;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • The building materials used for improving indoor air quality, the wood charcoal mixed with cement mortar or natural water paint were examined for their potential removing ability of formaldehyde. After the reaction of samples with formaldehyde in the glass flasks designed in our lab, the remaining formaldehyde was collected using DNPH (2,4-dinitrophenyl hydrazine) cartridges, and their concentration was determined using HPLC. From the results, it was found that the removing amount of formaldehyde per one gram sample containing 5, 10, or 15% of wood charcoal was more than three times compared to that of control (100% cement mortar or water paint). Their elimination percentages from the initial formaldehyde was about 80~90%. The experimental results for wood charcoal-water paint showed a similar trend with those of wood charcoal-cement mortar samples. Their elimination percentages from the initial formaldehyde was about 90%. It is proposed that formaldehyde is adsorbed on the adsorbed 'O' or 'OH' groups in the graphene layers formed through the re-arrangement of lignocellulose in the wood during the carbonization procedure.

Bending Strength of Board Manufactured from Sawdust, Rice Husk and Charcoal (톱밥과 왕겨 및 숯을 이용하여 제조한 보드의 휨성능)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • Purpose of this study is reviewing the use method for the sawdust (sawmilling by-product) and rice husk (Agriculture by-product) by adding charcoal, an eco-friendly material. Mixed composite boards were manufactured with those materials with each density and mixing ratio, and bending performance was investigated. When the addition ratio of sawdust, rice husk and charcoal is 50:20:20 and the resin addition ratio is 10%, as the density of the prepared mixed board ranges from 0.5 g/cm3 to 0.7 g/cm3, the bending strength was 0.42~3.24 N/mm2, dynamic modulus of elasticity was 94.5~888.4 N/mm2, and the static modulus of elasticity was in the range of 31.4~220.7 N/mm2. As the density increased, the bending performance increased, indicating that the density had a significant effect on the bending performance. In a board prepared by setting the density of 0.6 g/cm3, the addition ratio of sawdust to 50%, and the addition ratio of rice husk and charcoal at different ratios, the bending performance showed a tendency to decrease as the addition ratio of charcoal increased. The relationship between the addition ratio of rice husk and charcoal, bending strength, resonance frequency, and dynamic and static bending modulus showed a rather low correlation with the values of the coefficient of determination (R2) of 0.4562, 0.4310, 0.4589, and 0.5847, respectively. Thus, we found that the effect of the addition ratio on the bending performance was small.

Comparison of clay and charcoal as feed additives for Protaetia brevitarsis (Coleoptera: Scarabaeidae)

  • Kim, Hong Geun;Park, Kwan-Ho;Lee, Seokhyun;Kwak, Kyu-Won;Choi, Mun Suk;Choi, Ji-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.1
    • /
    • pp.25-29
    • /
    • 2015
  • The white-spotted chafer, Protaetia brevitarsis (Coleoptera: Scarabaeidae), has been traditionally used in Korea as a medicine for preventing liver-related diseases and suppressing liver cancer. Therefore, this insect is economically important and is commercially reared and sold in Korea. Recently, P. brevitarsis was listed as a temporal food ingredient by the Korean Ministry of Food and Drug Safety. Given the increasing economic importance of this beetle, we have sought to improve rearing conditions for its commercial production. In this study, we compared the effects of two food supplements, clay and charcoal, on the growth of second instar larvae of P. brevitarsis. Clay and charcoal are generally known as good adsorbent for removal of contaminating substances in insect feed. We fed second instar P. brevitarsis larvae a commercial diet consisting of fermented sawdust with seven different combinations of clay and/or activated charcoal, and measured their effects on weight gain for approximately 17 wk until larvae pupated. We found that addition of clay at 2.5% w/w of the fermented sawdust diet had no negative effect on weight gain of second instar P. brevitarsis larvae and thus may improve the quality of P. brevitarsis as a commercial food.

Growth, Yield and Grain Quality of Rice Affected by Application of Crab Shell, Sericite Ore, and Charcoal Powders (게 껍질, 견운모 및 숯 분말이 벼의 생육, 수량 및 쌀의 품질에 미치는 영향)

  • Lee, Suk-Soon;Lee, Mun-Joung;Kim, Bok-Jin;Hong, Seung-Beom
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.185-190
    • /
    • 2005
  • An experiment was conducted to know the effects of crab shell, sericite ore, and charcoal powders on the growth, yield, and grain quality of rice. After application of 110-40-57 kg/ha of $N-P_2O_5-K_2O$, 3,000 kg/ha of crab shell and charcoal powders and 5,000 kg/ha of sericite ore powder were applied and incorporated into soil before transplanting of rice seedlings. The number of tillers and panicles, leaf area index at heading stage, N concentration of plants, and protein content and chalkiness of rice grains were increased with the application of crab shell powder, while the percentage of ripened stains and head rice and Toyo taste value were decreased. The yield of milled rice and other grain appearance and chemical and physical properties of rice grains were not affected by the application of crab shell powder. The sericite ore and charcoal powders increased protein content decreased Toyo taste value, but did not affect on the growth, yield and yield components and other grain qualities.