• Title/Summary/Keyword: Korean Wind Power Industry

Search Result 94, Processing Time 0.024 seconds

Study on the OCR Setting Using the Voltage Component Considering Application of the SFCL in a Power Distribution System (배전계통에 초전도한류기 적용시 전압요소를 이용한 과전류계전기 정정 연구)

  • Lim, Seung-Taek;Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1587-1594
    • /
    • 2018
  • In south korea, the government make a plan to generate the 20% of the total electrical power as renewable source like wind generation and solar generation. This plan will accelerate the increase of fault current with power industry's growth. As the increase of fault current, the superconducting fault current limiter (SFCL) has been studied. In case that the SFCL is applied in power system, it can cause the overcurrent relay (OCR)'s trip delay because of the reduced fault current. In this paper, the overcurrent relay with voltage component was suggested to improve the OCR's trip delay caused by the SFCL and compensational constant was introduced to have the trip time similar to the trip time of case without the SFCL. For conforming the effect of the suggested OCR with voltage component, the PSCAD/EMTDC simulation modeling and analysis were conducted. Through the simulation, it was conformed that the trip delay could be improved by using the suggested OCR and compensational constant.

A Study on Optimization of Tooth Micro-geometry for Wind Turbine High Speed Stage Helical Gear Pair (풍력터빈용 고속단 헬리컬 기어의 치형 최적화에 관한 연구)

  • Cho, Sungmin;Lee, Do-Young;Kim, Laesung;Cho, Sangpil;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.15-20
    • /
    • 2014
  • The wind industry grew in the first decade of the 21st century at rates consistently above 20% a year. For wind turbine, gearbox failure can be extremely costly in terms of repair costs, replacement parts, and in lost power production due to downtime. In this paper, gear tooth micro-modification for the high speed stage was used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox was firstly modeled in a software, and then the various combined tooth modification were presented, and the prediction of transmission under the loaded torque for the helical gear pair was investigated, the normal load distribution and root stress were also obtained and compared before and after tooth modification under one torque. The simulation results showed that the transmission error and normal load distribution under the load can be minimized by the appropriate tooth modification. It is a good approach where the simulated result is used to improve the design before the prototype is available for the test.

A Study on the Reconfiguration in the Regulation of Electric Safety Management for the Guarantee of Safety (안전성 확보를 위한 전기안전관리기준의 재설정에 관한 연구)

  • Chung, Jae-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.45-49
    • /
    • 2009
  • This study is to prepare a reasonable basis for the improvement of the electrical safety management regulation. The standards in domestic and foreign countries for the application of new and renewable energy facilities and other devices are analyzed. Other regulations excluding the electrical safety fields and wide surveys are also carried out. Consequently, it is asked that the classification between normal and self electrical facilities should be clear and deregulation for small businesses has to be followed. This study is showed that standards investigates of receiving equipment below 600V above 75kW, eletrical safety manager employment of manufacturing industry and Mid-night electric power. And, it is showed that consignment permission and Consignment inspection periodic relaxation about wind development equipment below 1,000kW, consignment of Technical Development equipment for new and renewable energy below 250kW.

A Study on Decision-making of Equipment Procurement for Plant Operations & Maintenance (O&M) - Focused on Technology Strategy perspective - (플랜트 O&M을 위한 기자재 조달방식 의사결정에 관한 연구 - 기술전략 관점을 중심으로 -)

  • Hong, Daegeun;Lim, Yongtaek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2019
  • In the plant industry, the share of equipment accounts for 45 ~ 75%, which is very high. It is a traditional plant centered on processes and reactions like petroleum and chemical plants. Renewable energy generation plants such as wind power generation and solar power generation are equipment-centric plants. Equipment-centric plants are very important not only in the EPC phase but also in the operation and management phase. The procurement of equipment for plant operation and management can be divided into make and buy. Make is a method of producing equipment itself, and buy is a method of procuring equipment from the outside. The procurement method of the equipment directly affects the plant operation and management cost. In this study, the decision making of equipment procurement method for plant operation and management is defined as 4 phase. Each phase is selection of procurement decision-making objects, technology strategy perspective, finance perspective, and production perspective. In detail, we defined selection process of procurement decision-making objects and technology strategy perspective process. We will contribute to the enhancement of the competitiveness of the plant operation and management area by carrying out researches on the process and application examples of financial and production perspectives in the future.

Anti-Windup PI Control Algorithm for Voltage Sag Compensation (Voltage Sag 보상을 위한 Anti-Wind up을 이용한 PI제어 알고리즘)

  • Lee, Kyo-Sung;Choi, Hyun-Young;Lee, Yong-Jae;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.116-118
    • /
    • 2002
  • Of all known power quality problems, voltage sags provide the largest reason for concern. Sags occurs more frequently than outages and therefore tend to be more costly for industry as modern technical equipment becomes all the more sensitive to the quality and reliability of supply. Therefore we designed for a new model for Voltage Sag compensator, and we will implement Anti-Windup PI Controller with IP Block.

  • PDF

Phytomonitoring of the Genotoxicity of Environmental Pollutants: An Application to Armenian Nuclear Power Plant

  • Kim, Jin Kyu;Aroutiounian, Rouben M.;Nebish, Anna A.;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.181-185
    • /
    • 2015
  • Today the biosafety evaluation, a common problem of vital importance, is based on internationally proved test-systems, standards and techniques. The paradigm of biosafety includes multidisciplinary approach, a combination of physical, chemical and biological tests to monitor the environmental level of pollutants and needs to be improved by modern approaches. The genetic risk of environmental pollutions has long been studied by many researchers. In this study, used was the known sensitive plant test-system, clones of plant Tradescantia (spiderwort) able to detect gene mutations (frequency of mutational events and formation of micronuclei) in combination with chemical and, in some instances, with radiological measurements. In addition, male gametophyte generation of fruit trees was applied as bioindicators of genotoxicity. The obtained results did not show any significant increase along with wind direction. As for the male gametophyte assay, the fertility of the investigated fruit-trees near to NPP did not significantly differ from that of the control point. The influence of the NPP on the male generative system of the investigated taxa of fruit trees for the investigated year was not revealed. The system described needs to be expanded by species of interest (human) as there is a difficulty to transfer the revealed dose correlations to humans. The development of this idea includes various levels: population (epidemiological studies), individual, cellular, molecular (DNA), etc.

A Study of Performance estimate and Flow Analysis of the 100kW Counter-Rotating Marine Current Turbine by CFD

  • Kim, Mun-Oh;Kim, Chang-Goo;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.166.1-166.1
    • /
    • 2011
  • The rotor design is fundamental to the performance and dynamic response of the Counter-rotating marine tidal current turbine. The wind industry has seen significant advancement single rotor blade technology, offering considerable knowledge and making it easy to transfer to tidal stream energy converters. In this paper, 3D flow and performance an alysis on a 100 kW counter-rotating marine current turbine blade was carried out by using the 3-D Navier-Stokes commercial solver(ANSYS CFX-11.0) to provide more efficient design techniques to design engineers. The front and rear rotor diameter is 8m and the rotating speed is 24.72rpm. Hexahedral meshing was generated by ICEM-CFD to achieve better quality of results. The rated power and its approaching stream velocity for design are 100 kW and 2 m/s respectively. The pressure distribution on the blade's suction side tells us that the pressure becomes low at the leading edge of the airfoil as it moves from the hub to the tip.

  • PDF

Single-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation for Simple and Low Cost Stand-Alone Renewable Energy Utilizations Part II : Simulation and Experimental Results

  • Ahmed, Tarek;Noro, Osamu;Soshin, Koji;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this paper, the power conditioner composed of the stand-alone single-phase squirrel cage rotor type self-excited induction generator (SEIG) driven by prime movers such as a wind turbine and a micro gas turbine (MGT) is presented by using the steady-state circuit analysis based on the two nodal admittance approaches using the per-unit frequency in addition to a new state variable defined by the per-unit slip frequency along with its performance evaluations for the stand-alone energy utilizations. The stande-alone single-phase SEIG operating performances in unregulated voltage control loop are then evaluated on line under the conditions of the speed change transients of the prime mover and the stand-alone electrical passive load power variations with the simple theoretical analysis and the efficient computation processing procedures described in the part I of this paper. In addition, a feasuible PI controlled feedback closed-loop voltage regulation scheme of the stande-alone single-phase SEIG is designed on the basis of the static VAR compensate. (SVC) and discussed in experiment for the promising stand-alone power conditioner. The experimental operating performance results are illustrated and give good agreements with the simulation ones. The simulation and experimental results of the stand-alone single-phase SEIG with the simple SVC controller for its stabilized voltage regulation prove the practical effectiveness of the additional SVC control loop scheme including the PI controller with fast response characteristics and steady-sate performance improvements.

Study on Industrial Inverters for Driving High-efficiency High-voltage Field-stop IGBT Optimization Design (산업용 인버터 구동을 위한 고효율 고내압 Field-stop IGBT 최적화 설계에 관한 연구)

  • Lee, Myung Hwan;Kim, Bum June;Jung, Eun Sik;Jung, Hun Suk;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.257-263
    • /
    • 2013
  • In this paper, Solar, Wind, fuel cell used in a Power conversion devices and industrial inverter motor to increase the efficiency of energy consumption, which is a core part of high-efficiency, high-voltage Trench Gate Field Stop IGBT was studied. For this purpose Planar type NPT IGBT and Planar type Field Stop IGBT have designed a basic structure designed to Trench Gate Field Stop IGBT based on the completed structure by analyzing the energy consumption of electrical characteristics, efficiency is a key part, high-efficiency and high-voltage inverter for industry regarding the optimization design for Trench Gate Field Stop IGBT.

The Basic Study on the Ripple Effect of Industrial & Technological Policy for New & Renewable Energy (신재생에너지 산업 기술 정책의 투자효과 분석에 대한 기초 연구)

  • Kim, Jeongbae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.18-24
    • /
    • 2012
  • This study is to propose the quantitative methods instead of total results on New & Renewable energy R&D investments. To do that, this study used KETEP R&D investment profile, National R&D investment profile, and ISTANS industrial census results. From the analysis, this study firstly showed that the R&D investment on New&Renewable energy is higher than that of other industrial parts. And the investment increase ratio on New&Renewable energy is also very higher during past 10 years. And finally showed that the ripple effects(relatively the employee number, the amount of sales, and the amount of export) of the focus energy group including feul cell, photovoltaic, and wind power was higher than those of general manufacturing industry. This approach was firstly conducted using the poor census results, so other analysis methods will be developed and performed to exact;y show the investment ripple effect.